These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18478699)

  • 41. Conformationally constrained aromatic oligoamide foldamers with supersecondary structure motifs.
    Hu HY; Xiang JF; Chen CF
    Org Biomol Chem; 2009 Jun; 7(12):2534-9. PubMed ID: 19503926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrinsically Photoswitchable α/β Peptides toward Two-State Foldamers.
    Marafon G; Crisma M; Moretto A
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10217-10220. PubMed ID: 29944774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploiting aromatic interactions for β-peptide foldamer helix stabilization: a significant design element.
    Mándity IM; Monsignori A; Fülöp L; Forró E; Fülöp F
    Chemistry; 2014 Apr; 20(16):4591-7. PubMed ID: 24664416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ(4)-hybrid peptide helices.
    Jadhav SV; Misra R; Gopi HN
    Chemistry; 2014 Dec; 20(50):16523-8. PubMed ID: 25346477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing hybrid foldamers: the effect on the peptide conformational bias of β- versus α- and γ-linear residues in alternation with (1R,2S)-2-aminocyclobutane-1-carboxylic acid.
    Celis S; Gorrea E; Nolis P; Illa O; Ortuño RM
    Org Biomol Chem; 2012 Jan; 10(4):861-8. PubMed ID: 22130901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Helix bundle quaternary structure from alpha/beta-peptide foldamers.
    Horne WS; Price JL; Keck JL; Gellman SH
    J Am Chem Soc; 2007 Apr; 129(14):4178-80. PubMed ID: 17362016
    [No Abstract]   [Full Text] [Related]  

  • 47. Beyond de novo protein design--de novo design of non-natural folded oligomers.
    Cheng RP
    Curr Opin Struct Biol; 2004 Aug; 14(4):512-20. PubMed ID: 15313247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.
    Checco JW; Kreitler DF; Thomas NC; Belair DG; Rettko NJ; Murphy WL; Forest KT; Gellman SH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4552-7. PubMed ID: 25825775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Secondary structure of short β-peptides as the chiral expression of monomeric building units: a rational and predictive model.
    Gorrea E; Pohl G; Nolis P; Celis S; Burusco KK; Branchadell V; Perczel A; Ortuño RM
    J Org Chem; 2012 Nov; 77(21):9795-806. PubMed ID: 23030251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via "stepping stones".
    Cordes M; Köttgen A; Jasper C; Jacques O; Boudebous H; Giese B
    Angew Chem Int Ed Engl; 2008; 47(18):3461-3. PubMed ID: 18399515
    [No Abstract]   [Full Text] [Related]  

  • 51. Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface.
    Segman-Magidovich S; Lee MR; Vaiser V; Struth B; Gellman SH; Rapaport H
    Chemistry; 2011 Dec; 17(52):14857-66. PubMed ID: 22105992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and synthesis of novel 19F-amino acid: a promising 19F NMR label for peptide studies.
    Bandak D; Babii O; Vasiuta R; Komarov IV; Mykhailiuk PK
    Org Lett; 2015 Jan; 17(2):226-9. PubMed ID: 25545327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.
    Taniguchi S; Watanabe N; Nose T; Maeda I
    J Pept Sci; 2016 Jan; 22(1):36-42. PubMed ID: 26662843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C9 helices and ribbons in gamma-peptides: crystal structures of gabapentin oligomers.
    Vasudev PG; Shamala N; Ananda K; Balaram P
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4972-5. PubMed ID: 16003813
    [No Abstract]   [Full Text] [Related]  

  • 55. Molecular spacers for physicochemical investigations based on novel helical and extended peptide structures.
    Toniolo C; Crisma M; Formaggio F; Peggion C; Broxterman QB; Kaptein B
    Biopolymers; 2004; 76(2):162-76. PubMed ID: 15054896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aromatic interactions in peptides: impact on structure and function.
    Waters ML
    Biopolymers; 2004; 76(5):435-45. PubMed ID: 15478139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Foldameric α/β-peptide analogs of the β-sheet-forming antiangiogenic anginex: structure and bioactivity.
    Hegedüs Z; Wéber E; Kriston-Pál É; Makra I; Czibula Á; Monostori É; Martinek TA
    J Am Chem Soc; 2013 Nov; 135(44):16578-84. PubMed ID: 24088182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fully extended tetrapeptide consisting of natural amino acids.
    Birkedal H; Schwarzenbach D; Pattison P
    Chem Commun (Camb); 2002 Dec; (23):2812-3. PubMed ID: 12478759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aromatic interactions with naphthylalanine in a β-hairpin peptide.
    Meyer D; Mutschler C; Robertson I; Batt A; Tatko C
    J Pept Sci; 2013 May; 19(5):277-82. PubMed ID: 23456882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unprecedented torsional preferences in trans-β2,3-amino acid residues and formation of 11-helices in α,β2,3-hybrid peptides.
    Balamurugan D; Muraleedharan KM
    Chemistry; 2012 Jul; 18(31):9516-20. PubMed ID: 22736566
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.