BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 18479707)

  • 21. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site.
    Danielson UH; Jiang F; Hansson LO; Mannervik B
    Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes.
    Moche M; Dehesh K; Edwards P; Lindqvist Y
    J Mol Biol; 2001 Jan; 305(3):491-503. PubMed ID: 11152607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering the key residues in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein.
    Karmodiya K; Modak R; Sahoo N; Sajad S; Surolia N
    FEBS J; 2008 Oct; 275(19):4756-66. PubMed ID: 18721141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference.
    Buysschaert G; Verstraete K; Savvides SN; Vergauwen B
    FEBS J; 2013 Mar; 280(5):1358-70. PubMed ID: 23311896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional structure of rat-liver acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen.
    Tokuoka K; Nakajima Y; Hirotsu K; Miyahara I; Nishina Y; Shiga K; Tamaoki H; Setoyama C; Tojo H; Miura R
    J Biochem; 2006 Apr; 139(4):789-95. PubMed ID: 16672280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the tetrameric form of human L-Xylulose reductase: probing the inhibitor-binding site with molecular modeling and site-directed mutagenesis.
    El-Kabbani O; Carbone V; Darmanin C; Ishikura S; Hara A
    Proteins; 2005 Aug; 60(3):424-32. PubMed ID: 15906319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP.
    Li J; Wei Z; Zheng M; Gu X; Deng Y; Qiu R; Chen F; Ji C; Gong W; Xie Y; Mao Y
    J Mol Biol; 2006 Feb; 355(5):980-8. PubMed ID: 16359702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola.
    Tucci S; Martin W
    FEBS Lett; 2007 Apr; 581(8):1561-6. PubMed ID: 17382934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli.
    Kim IK; Yim HS; Kim MK; Kim DW; Kim YM; Cha SS; Kang SO
    J Mol Biol; 2008 May; 379(2):372-84. PubMed ID: 18455185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis.
    Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ
    Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases.
    Maurus R; Nguyen NT; Stokell DJ; Ayed A; Hultin PG; Duckworth HW; Brayer GD
    Biochemistry; 2003 May; 42(19):5555-65. PubMed ID: 12741811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.
    Faucher F; Cantin L; Pereira de Jésus-Tran K; Lemieux M; Luu-The V; Labrie F; Breton R
    J Mol Biol; 2007 Jun; 369(2):525-40. PubMed ID: 17442338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.
    Colussi T; Parsonage D; Boles W; Matsuoka T; Mallett TC; Karplus PA; Claiborne A
    Biochemistry; 2008 Jan; 47(3):965-77. PubMed ID: 18154320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
    Richter N; Breicha K; Hummel W; Niefind K
    J Mol Biol; 2010 Dec; 404(3):353-62. PubMed ID: 20887732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism.
    Hu K; Zhao M; Zhang T; Zha M; Zhong C; Jiang Y; Ding J
    Biochem J; 2013 Jan; 449(1):79-89. PubMed ID: 23050861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Architecture of a fungal fatty acid synthase at 5 A resolution.
    Jenni S; Leibundgut M; Maier T; Ban N
    Science; 2006 Mar; 311(5765):1263-7. PubMed ID: 16513976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.