These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18479812)

  • 1. Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.
    Wang TH; Li MH; Teng SP
    J Hazard Mater; 2009 Jan; 161(1):409-15. PubMed ID: 18479812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cesium adsorption and distribution onto crushed granite under different physicochemical conditions.
    Tsai SC; Wang TH; Li MH; Wei YY; Teng SP
    J Hazard Mater; 2009 Jan; 161(2-3):854-61. PubMed ID: 18515005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments.
    Steefel CI; Carroll S; Zhao P; Roberts S
    J Contam Hydrol; 2003 Dec; 67(1-4):219-46. PubMed ID: 14607478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.
    Wang TH; Chen CL; Ou LY; Wei YY; Chang FL; Teng SP
    J Hazard Mater; 2011 Sep; 192(3):1079-87. PubMed ID: 21763071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desorption of cesium from granite under various aqueous conditions.
    Wang TH; Li MH; Wei YY; Teng SP
    Appl Radiat Isot; 2010 Dec; 68(12):2140-6. PubMed ID: 20656497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite.
    Cheng HP; Li MH; Li S
    J Contam Hydrol; 2003 Mar; 61(1-4):371-85. PubMed ID: 12598118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate.
    Delolme C; Hébrard-Labit C; Spadini L; Gaudet JP
    J Contam Hydrol; 2004 Jun; 70(3-4):205-24. PubMed ID: 15134875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.
    Vejsada J; Jelínek E; Randa Z; Hradil D; Prikryl R
    Appl Radiat Isot; 2005 Jan; 62(1):91-6. PubMed ID: 15498690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caesium sorption by hydrated cement as a function of degradation state: experiments and modelling.
    Ochs M; Pointeau I; Giffaut E
    Waste Manag; 2006; 26(7):725-32. PubMed ID: 16697176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling.
    Szenknect S; Ardois C; Gaudet JP; Barthès V
    J Contam Hydrol; 2005 Jan; 76(1-2):139-65. PubMed ID: 15588576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite.
    Li MH; Wang TH; Teng SP
    J Hazard Mater; 2009 Feb; 162(1):530-5. PubMed ID: 18579288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences and implications of strontium distribution coefficient on various granite compositional materials.
    Cai F; Zhang X; Ma F; Qi L; Lu D; Dai Z
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39012533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freundlich and dual Langmuir isotherm models for predicting 137Cs binding on Savannah River Site soils.
    Goto M; Rosson R; Wampler JM; Elliott WC; Serkiz S; Kahn B
    Health Phys; 2008 Jan; 94(1):18-32. PubMed ID: 18091148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of moisture content and redox potential on in situ Kd values for radioiodine in soil.
    Ashworth DJ; Shaw G
    Sci Total Environ; 2006 Apr; 359(1-3):244-54. PubMed ID: 15927237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of cesium, cobalt and europium on low-rank coal and chitosan.
    Mizera J; Mizerová G; Machovic V; Borecká L
    Water Res; 2007 Feb; 41(3):620-6. PubMed ID: 17188322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow.
    Rod KA; Um W; Flury M
    Environ Sci Technol; 2010 Nov; 44(21):8089-94. PubMed ID: 20886862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.