These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18479934)

  • 1. Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS.
    Lee J; Musyimi HK; Soper SA; Murray KK
    J Am Soc Mass Spectrom; 2008 Jul; 19(7):964-72. PubMed ID: 18479934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS.
    Lee J; Soper SA; Murray KK
    Analyst; 2009 Dec; 134(12):2426-33. PubMed ID: 19918612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Lee J; Soper SA; Murray KK
    Rapid Commun Mass Spectrom; 2011 Mar; 25(6):693-9. PubMed ID: 21337630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns.
    Ro KW; Liu J; Knapp DR
    J Chromatogr A; 2006 Apr; 1111(1):40-7. PubMed ID: 16480733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis.
    Bao H; Zhang L; Chen G
    J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-packed channel bioreactor for microfluidic protein digestion.
    Fan H; Chen G
    Proteomics; 2007 Oct; 7(19):3445-9. PubMed ID: 17722209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis.
    Liu T; Bao H; Zhang L; Chen G
    Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping.
    Fan H; Yao F; Xu S; Chen G
    Talanta; 2013 Dec; 117():119-26. PubMed ID: 24209319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of trypsin immobilized on the functionable alkylthiolate self-assembled monolayers: a preliminary application for trypsin digestion chip on protein identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Tyan YC; Liao JD; Jong SB; Liao PC; Yang MH; Chang YW; Klauser R; Himmelhaus M; Grunze M
    J Mater Sci Mater Med; 2005 Feb; 16(2):135-42. PubMed ID: 15744601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis.
    Wang S; Chen Z; Yang P; Chen G
    Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis.
    Liu T; Bao H; Chen G
    Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacing capillary gel microfluidic chips with infrared laser desorption mass spectrometry.
    Xu Y; Little MW; Murray KK
    J Am Soc Mass Spectrom; 2006 Mar; 17(3):469-74. PubMed ID: 16480892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet.
    Musyimi HK; Guy J; Narcisse DA; Soper SA; Murray KK
    Electrophoresis; 2005 Dec; 26(24):4703-10. PubMed ID: 16358254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS.
    Young JB; Li L
    Anal Chem; 2007 Aug; 79(15):5927-34. PubMed ID: 17605467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis.
    Fan H; Bao H; Zhang L; Chen G
    Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS.
    Wu HF; Agrawal K; Shrivas K; Lee YH
    J Mass Spectrom; 2010 Dec; 45(12):1402-8. PubMed ID: 20967754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospray interfacing of polymer microfluidics to MALDI-MS.
    Wang YX; Zhou Y; Balgley BM; Cooper JW; Lee CS; DeVoe DL
    Electrophoresis; 2005 Oct; 26(19):3631-40. PubMed ID: 16136528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.