These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18480003)

  • 41. Genotyping of CYP2C9 and VKORC1 polymorphisms predicts south Indian patients with deep vein thrombosis as fast metabolizers of warfarin/acenocoumarin.
    Arunkumar G; Vishnuprabu D; Nupur B; Vidyasagaran T; Murugan AK; Munirajan AK
    Drug Discov Ther; 2017; 11(4):198-205. PubMed ID: 28867752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Creating an Optimal Warfarin Nomogram (CROWN) Study.
    Perlstein TS; Goldhaber SZ; Nelson K; Joshi V; Morgan TV; Lesko LJ; Lee JY; Gobburu J; Schoenfeld D; Kucherlapati R; Freeman MW; Creager MA
    Thromb Haemost; 2012 Jan; 107(1):59-68. PubMed ID: 22116191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The long and winding road to warfarin pharmacogenetic testing.
    Ginsburg GS; Voora D
    J Am Coll Cardiol; 2010 Jun; 55(25):2813-5. PubMed ID: 20579536
    [No Abstract]   [Full Text] [Related]  

  • 44. A regulatory science perspective on warfarin therapy: a pharmacogenetic opportunity.
    Kim MJ; Huang SM; Meyer UA; Rahman A; Lesko LJ
    J Clin Pharmacol; 2009 Feb; 49(2):138-46. PubMed ID: 19179293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of genetic factors for warfarin dose prediction.
    Caldwell MD; Berg RL; Zhang KQ; Glurich I; Schmelzer JR; Yale SH; Vidaillet HJ; Burmester JK
    Clin Med Res; 2007 Mar; 5(1):8-16. PubMed ID: 17456829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients.
    Obayashi K; Nakamura K; Kawana J; Ogata H; Hanada K; Kurabayashi M; Hasegawa A; Yamamoto K; Horiuchi R
    Clin Pharmacol Ther; 2006 Aug; 80(2):169-78. PubMed ID: 16890578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes.
    Wen MS; Lee M; Chen JJ; Chuang HP; Lu LS; Chen CH; Lee TH; Kuo CT; Sun FM; Chang YJ; Kuan PL; Chen YF; Charng MJ; Ray CY; Wu JY; Chen YT
    Clin Pharmacol Ther; 2008 Jul; 84(1):83-9. PubMed ID: 18183038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation.
    Schalekamp T; Brassé BP; Roijers JF; Chahid Y; van Geest-Daalderop JH; de Vries-Goldschmeding H; van Wijk EM; Egberts AC; de Boer A
    Clin Pharmacol Ther; 2006 Jul; 80(1):13-22. PubMed ID: 16815313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genotyping three SNPs affecting warfarin drug response by isothermal real-time HDA assays.
    Li Y; Jortani SA; Ramey-Hartung B; Hudson E; Lemieux B; Kong H
    Clin Chim Acta; 2011 Jan; 412(1-2):79-85. PubMed ID: 20854800
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CYP2C9 and VKORC1 genetic polymorphism analysis might be necessary in patients with Factor V Leiden and prothrombin gene G2021A mutation(s).
    Leung A; Huang CK; Muto R; Liu Y; Pan Q
    Diagn Mol Pathol; 2007 Sep; 16(3):184-6. PubMed ID: 17721328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients.
    Michaud V; Vanier MC; Brouillette D; Roy D; Verret L; Noel N; Taillon I; O'Hara G; Gossard D; Champagne M; Goodman K; Renaud Y; Brown A; Phillips M; Ajami AM; Turgeon J
    Clin Pharmacol Ther; 2008 May; 83(5):740-8. PubMed ID: 18030307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Will there be a role for genotyping in warfarin therapy?
    Gandara E; Wells PS
    Curr Opin Hematol; 2010 Sep; 17(5):439-43. PubMed ID: 20601874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pharmacogenomics of warfarin: uncovering a piece of the warfarin mystery.
    Gulseth MP; Grice GR; Dager WE
    Am J Health Syst Pharm; 2009 Jan; 66(2):123-33. PubMed ID: 19139476
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring warfarin pharmacogenomics with the extreme-discordant-phenotype methodology: impact of FVII polymorphisms on stable anticoagulation with warfarin.
    Fuchshuber-Moraes M; Perini JA; Rosskopf D; Suarez-Kurtz G
    Eur J Clin Pharmacol; 2009 Aug; 65(8):789-93. PubMed ID: 19387626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Warfarin pharmacogenetics: ready for clinical utility?
    Baudhuin LM
    Clin Lab Sci; 2009; 22(3):151-5. PubMed ID: 19827409
    [No Abstract]   [Full Text] [Related]  

  • 56. Using genetic testing to guide warfarin therapy.
    Ungerer LL; Pestka EL; Messner PK
    Nursing; 2012 May; 42(5):63-5. PubMed ID: 22531080
    [No Abstract]   [Full Text] [Related]  

  • 57. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.
    Cooper GM; Johnson JA; Langaee TY; Feng H; Stanaway IB; Schwarz UI; Ritchie MD; Stein CM; Roden DM; Smith JD; Veenstra DL; Rettie AE; Rieder MJ
    Blood; 2008 Aug; 112(4):1022-7. PubMed ID: 18535201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacogenetics-based coumarin therapy.
    Gage BF
    Hematology Am Soc Hematol Educ Program; 2006; ():467-73. PubMed ID: 17124101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genotype and adverse drug reactions to warfarin.
    Byron KA; Dear AE
    Med J Aust; 2007 Jul; 187(1):61-2. PubMed ID: 17605718
    [No Abstract]   [Full Text] [Related]  

  • 60. Refining the use of warfarin through genetic testing.
    Lee SC
    Int Angiol; 2008 Aug; 27(4):271-3. PubMed ID: 18677287
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.