BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1848009)

  • 1. Effects of site-directed mutagenesis at residues cysteine-31 and cysteine-184 on lecithin-cholesterol acyltransferase activity.
    Francone OL; Fielding CJ
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1716-20. PubMed ID: 1848009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of cysteines in human lecithin:cholesterol acyltransferase.
    Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ
    Biochemistry; 1993 Mar; 32(12):3089-94. PubMed ID: 8457570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glutamic acid residues 154, 155, and 165 of lecithin:cholesterol acyltransferase in cholesterol esterification and phospholipase A2 activities.
    Wang J; DeLozier JA; Gebre AK; Dolphin PJ; Parks JS
    J Lipid Res; 1998 Jan; 39(1):51-8. PubMed ID: 9469585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of site-directed mutagenesis on the N-glycosylation sites of human lecithin:cholesterol acyltransferase.
    Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ
    Biochemistry; 1993 Aug; 32(34):8732-6. PubMed ID: 8364023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of site-directed mutagenesis on the serine residues of human lecithin:cholesterol acyltransferase.
    Qu SJ; Fan HZ; Blanco-Vaca F; Pownall HJ
    Lipids; 1994 Dec; 29(12):803-9. PubMed ID: 7854004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lecithin:cholesterol acyltransferase: role of N-linked glycosylation in enzyme function.
    O K; Hill JS; Wang X; McLeod R; Pritchard PH
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):879-84. PubMed ID: 8379944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity.
    O K; Hill JS; Pritchard PH
    Biochim Biophys Acta; 1995 Jan; 1254(2):193-7. PubMed ID: 7827124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lecithin-cholesterol acyltransferase: effects of mutagenesis at N-linked oligosaccharide attachment sites on acyl acceptor specificity.
    Francone OL; Evangelista L; Fielding CJ
    Biochim Biophys Acta; 1993 Feb; 1166(2-3):301-4. PubMed ID: 8443248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the interfacial binding domain in the oxidative susceptibility of lecithin:cholesterol acyltransferase.
    Wang K; Subbaiah PV
    Biochem J; 2002 Aug; 365(Pt 3):649-57. PubMed ID: 11966470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins.
    Vickaryous NK; Teh EM; Stewart B; Dolphin PJ; Too CK; McLeod RS
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):164-72. PubMed ID: 12637024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in human lecithin:cholesterol acyltransferase. Site-directed mutagenesis at serine residues 181 and 216.
    Francone OL; Fielding CJ
    Biochemistry; 1991 Oct; 30(42):10074-7. PubMed ID: 1931938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two novel point mutations in the lecithin:cholesterol acyltransferase (LCAT) gene resulting in LCAT deficiency: LCAT (G873 deletion) and LCAT (Gly344-->Ser).
    Moriyama K; Sasaki J; Arakawa F; Takami N; Maeda E; Matsunaga A; Takada Y; Midorikawa K; Yanase T; Yoshino G
    J Lipid Res; 1995 Nov; 36(11):2329-43. PubMed ID: 8656071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human plasma lecithin-cholesterol acyltransferase. An elucidation of the catalytic mechanism.
    Jauhiainen M; Dolphin PJ
    J Biol Chem; 1986 May; 261(15):7032-43. PubMed ID: 3700425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the free sulfhydryl groups of lecithin-cholesterol acyltransferase for its sensitivity to oxidative inactivation.
    Wang K; Subbaiah PV
    Biochim Biophys Acta; 2000 Nov; 1488(3):268-77. PubMed ID: 11082536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human plasma lecithin-cholesterol acyltransferase. The vicinal nature of cysteine 31 and cysteine 184 in the catalytic site.
    Jauhiainen M; Stevenson KJ; Dolphin PJ
    J Biol Chem; 1988 May; 263(14):6525-33. PubMed ID: 3129428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic boronic acids as probes of the catalytic site of human plasma lecithin-cholesterol acyltransferase.
    Jauhiainen M; Ridgway ND; Dolphin PJ
    Biochim Biophys Acta; 1987 Apr; 918(2):175-88. PubMed ID: 3103690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lecithin cholesterol acyltransferase.
    Jonas A
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):245-56. PubMed ID: 11111093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation structure and enzyme activity of lecithin:cholesterol acyltransferase from human plasma, HepG2 cells, and baculoviral and Chinese hamster ovary cell expression systems.
    Miller KR; Wang J; Sorci-Thomas M; Anderson RA; Parks JS
    J Lipid Res; 1996 Mar; 37(3):551-61. PubMed ID: 8728318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lecithin:Cholesterol Acyltransferase Activation by Sulfhydryl-Reactive Small Molecules: Role of Cysteine-31.
    Freeman LA; Demosky SJ; Konaklieva M; Kuskovsky R; Aponte A; Ossoli AF; Gordon SM; Koby RF; Manthei KA; Shen M; Vaisman BL; Shamburek RD; Jadhav A; Calabresi L; Gucek M; Tesmer JJG; Levine RL; Remaley AT
    J Pharmacol Exp Ther; 2017 Aug; 362(2):306-318. PubMed ID: 28576974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two different allelic mutations in a Finnish family with lecithin:cholesterol acyltransferase deficiency.
    Miettinen H; Gylling H; Ulmanen I; Miettinen TA; Kontula K
    Arterioscler Thromb Vasc Biol; 1995 Apr; 15(4):460-7. PubMed ID: 7749857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.