BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18480178)

  • 21. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.
    Hou S; Xu R; Heinemann SH; Hoshi T
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):4039-43. PubMed ID: 18316727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol and PIP
    Vaithianathan T; Schneider EH; Bukiya AN; Dopico AM
    Adv Exp Med Biol; 2023; 1422():217-243. PubMed ID: 36988883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons.
    Li W; Gao SB; Lv CX; Wu Y; Guo ZH; Ding JP; Xu T
    J Cell Physiol; 2007 Aug; 212(2):348-57. PubMed ID: 17523149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol modulates BKCa channels by acting as an adjuvant of calcium.
    Liu J; Vaithianathan T; Manivannan K; Parrill A; Dopico AM
    Mol Pharmacol; 2008 Sep; 74(3):628-40. PubMed ID: 18552122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slo3 K+ channels: voltage and pH dependence of macroscopic currents.
    Zhang X; Zeng X; Lingle CJ
    J Gen Physiol; 2006 Sep; 128(3):317-36. PubMed ID: 16940555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels.
    Qian X; Nimigean CM; Niu X; Moss BL; Magleby KL
    J Gen Physiol; 2002 Dec; 120(6):829-43. PubMed ID: 12451052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insight into the heme-independent interplay between iron and carbon monoxide in CFTR and Slo1 BK
    Wang G
    Metallomics; 2017 Jun; 9(6):634-645. PubMed ID: 28474046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heme regulates allosteric activation of the Slo1 BK channel.
    Horrigan FT; Heinemann SH; Hoshi T
    J Gen Physiol; 2005 Jul; 126(1):7-21. PubMed ID: 15955873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulatory actions of a novel thiourea derivative on large-conductance, calcium-activated potassium channels.
    Wu SN; Chern JH; Shen S; Chen HH; Hsu YT; Lee CC; Chan MH; Lai MC; Shie FS
    J Cell Physiol; 2017 Dec; 232(12):3409-3421. PubMed ID: 28075010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues.
    Ha TS; Jeong SY; Cho SW; Jeon Hk; Roh GS; Choi WS; Park CS
    Eur J Biochem; 2000 Feb; 267(3):910-8. PubMed ID: 10651830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glutamate transporter GLT-1 by MAGI-1.
    Zou S; Pita-Almenar JD; Eskin A
    J Neurochem; 2011 Jun; 117(5):833-40. PubMed ID: 21426345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transduction of voltage and Ca2+ signals by Slo1 BK channels.
    Hoshi T; Pantazis A; Olcese R
    Physiology (Bethesda); 2013 May; 28(3):172-89. PubMed ID: 23636263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and functional characterization of ankyrin-repeat family protein ANKRA as a protein interacting with BKCa channel.
    Lim HH; Park CS
    Mol Biol Cell; 2005 Mar; 16(3):1013-25. PubMed ID: 15616191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 24S-hydroxycholesterol alters activity of large-conductance Ca
    Tajima N; Xiaoyan L; Taniguchi M; Kato N
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Oct; 1864(10):1525-1535. PubMed ID: 31136842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species-specific Differences among KCNMB3 BK beta3 auxiliary subunits: some beta3 N-terminal variants may be primate-specific subunits.
    Zeng X; Xia XM; Lingle CJ
    J Gen Physiol; 2008 Jul; 132(1):115-29. PubMed ID: 18591419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels.
    Santarelli LC; Wassef R; Heinemann SH; Hoshi T
    J Physiol; 2006 Mar; 571(Pt 2):329-48. PubMed ID: 16396928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-conductance Ca
    Tian Y; Heinemann SH; Hoshi T
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8591-8596. PubMed ID: 30967508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons.
    Misonou H; Menegola M; Buchwalder L; Park EW; Meredith A; Rhodes KJ; Aldrich RW; Trimmer JS
    J Comp Neurol; 2006 May; 496(3):289-302. PubMed ID: 16566008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental changes of BKCa channels depend on differentiation status in cultured podocytes.
    Yang J; Xu P; Xie Y; Li Z; Xu J; Zhang T; Yang Z
    In Vitro Cell Dev Biol Anim; 2013 Mar; 49(3):205-11. PubMed ID: 23443253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels.
    Wang YW; Ding JP; Xia XM; Lingle CJ
    J Neurosci; 2002 Mar; 22(5):1550-61. PubMed ID: 11880485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.