These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18480256)

  • 1. Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs.
    Wang H; Duennwald ML; Roberts BE; Rozeboom LM; Zhang YL; Steele AD; Krishnan R; Su LJ; Griffin D; Mukhopadhyay S; Hennessy EJ; Weigele P; Blanchard BJ; King J; Deniz AA; Buchwald SL; Ingram VM; Lindquist S; Shorter J
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7159-64. PubMed ID: 18480256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into a yeast prion illuminate nucleation and strain diversity.
    Krishnan R; Lindquist SL
    Nature; 2005 Jun; 435(7043):765-72. PubMed ID: 15944694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synergistic small-molecule combination directly eradicates diverse prion strain structures.
    Roberts BE; Duennwald ML; Wang H; Chung C; Lopreiato NP; Sweeny EA; Knight MN; Shorter J
    Nat Chem Biol; 2009 Dec; 5(12):936-46. PubMed ID: 19915541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Countering amyloid polymorphism and drug resistance with minimal drug cocktails.
    Duennwald ML; Shorter J
    Prion; 2010; 4(4):244-51. PubMed ID: 20935457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP modulates self-perpetuating conformational conversion generating structurally distinct yeast prion amyloids that limit autocatalytic amplification.
    Mahapatra S; Sarbahi A; Punia N; Joshi A; Avni A; Walimbe A; Mukhopadhyay S
    J Biol Chem; 2023 May; 299(5):104654. PubMed ID: 36990219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers.
    Shorter J; Lindquist S
    Science; 2004 Jun; 304(5678):1793-7. PubMed ID: 15155912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of yeast to studying amyloid and prion diseases.
    Chernoff YO; Grizel AV; Rubel AA; Zelinsky AA; Chandramowlishwaran P; Chernova TA
    Adv Genet; 2020; 105():293-380. PubMed ID: 32560789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
    Sergeeva AV; Sopova JV; Belashova TA; Siniukova VA; Chirinskaite AV; Galkin AP; Zadorsky SP
    Prion; 2019 Jan; 13(1):21-32. PubMed ID: 30558459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide sequences converting polyglutamine into a prion in yeast.
    Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H
    FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast Prions Compared to Functional Prions and Amyloids.
    Wickner RB; Edskes HK; Son M; Bezsonov EE; DeWilde M; Ducatez M
    J Mol Biol; 2018 Oct; 430(20):3707-3719. PubMed ID: 29698650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities.
    Shorter J; Lindquist S
    Mol Cell; 2006 Aug; 23(3):425-38. PubMed ID: 16885031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blessings in disguise: biological benefits of prion-like mechanisms.
    Newby GA; Lindquist S
    Trends Cell Biol; 2013 Jun; 23(6):251-9. PubMed ID: 23485338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.
    Bryan AW; O'Donnell CW; Menke M; Cowen LJ; Lindquist S; Berger B
    Proteins; 2012 Feb; 80(2):410-20. PubMed ID: 22095906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Yeast prions, mammalian amyloidoses, and the problem of proteomic networks].
    Galkin AP; Mironova LN; Zhuravleva GA; Inge-Vechtomov SG
    Genetika; 2006 Nov; 42(11):1558-70. PubMed ID: 17163073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
    Kimura Y; Koitabashi S; Fujita T
    Cell Struct Funct; 2003 Jun; 28(3):187-93. PubMed ID: 12951439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions.
    Shorter J; Lindquist S
    EMBO J; 2008 Oct; 27(20):2712-24. PubMed ID: 18833196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into intragenic and extragenic effectors of prion propagation using chimeric prion proteins.
    True HL; Kalastavadi T; Tank EM
    Prion; 2008; 2(2):45-7. PubMed ID: 19098443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into prion biology: integrating a protein misfolding pathway with its cellular environment.
    DiSalvo S; Serio TR
    Prion; 2011; 5(2):76-83. PubMed ID: 21654204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.