BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18480329)

  • 1. Clostridium difficile TxAC314 and SLP-36kDa enhance the immune response toward a co-administered antigen.
    Brun P; Scarpa M; Grillo A; Palù G; Mengoli C; Zecconi A; Spigaglia P; Mastrantonio P; Castagliuolo I
    J Med Microbiol; 2008 Jun; 57(Pt 6):725-731. PubMed ID: 18480329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridium difficile toxin A carboxyl-terminus peptide lacking ADP-ribosyltransferase activity acts as a mucosal adjuvant.
    Castagliuolo I; Sardina M; Brun P; DeRos C; Mastrotto C; Lovato L; Palù G
    Infect Immun; 2004 May; 72(5):2827-36. PubMed ID: 15102793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active immunization of hamsters against Clostridium difficile infection using surface-layer protein.
    Ní Eidhin DB; O'Brien JB; McCabe MS; Athié-Morales V; Kelleher DP
    FEMS Immunol Med Microbiol; 2008 Mar; 52(2):207-18. PubMed ID: 18093141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.
    Anosova NG; Brown AM; Li L; Liu N; Cole LE; Zhang J; Mehta H; Kleanthous H
    J Med Microbiol; 2013 Sep; 62(Pt 9):1394-1404. PubMed ID: 23518659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral Immunization with Nontoxigenic Clostridium difficile Strains Expressing Chimeric Fragments of TcdA and TcdB Elicits Protective Immunity against C. difficile Infection in Both Mice and Hamsters.
    Wang Y; Wang S; Bouillaut L; Li C; Duan Z; Zhang K; Ju X; Tzipori S; Sonenshein AL; Sun X
    Infect Immun; 2018 Nov; 86(11):. PubMed ID: 30150259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile.
    Bruxelle JF; Mizrahi A; Hoÿs S; Collignon A; Janoir C; Péchiné S
    PLoS One; 2017; 12(11):e0187212. PubMed ID: 29176760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models.
    Tian JH; Fuhrmann SR; Kluepfel-Stahl S; Carman RJ; Ellingsworth L; Flyer DC
    Vaccine; 2012 Jun; 30(28):4249-58. PubMed ID: 22537987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunogenicity of a Salmonella typhimurium aroA aroD vaccine expressing a nontoxic domain of Clostridium difficile toxin A.
    Ward SJ; Douce G; Figueiredo D; Dougan G; Wren BW
    Infect Immun; 1999 May; 67(5):2145-52. PubMed ID: 10225867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and local IgA.
    Ciabattini A; Giomarelli B; Parigi R; Chiavolini D; Pettini E; Aricò B; Giuliani MM; Santini L; Medaglini D; Pozzi G
    Vaccine; 2008 Aug; 26(33):4244-50. PubMed ID: 18582996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters.
    Wang YK; Yan YX; Kim HB; Ju X; Zhao S; Zhang K; Tzipori S; Sun X
    Hum Vaccin Immunother; 2015; 11(9):2215-22. PubMed ID: 26036797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity.
    Romano MR; Leuzzi R; Cappelletti E; Tontini M; Nilo A; Proietti D; Berti F; Costantino P; Adamo R; Scarselli M
    Toxins (Basel); 2014 Apr; 6(4):1385-96. PubMed ID: 24759173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.
    Guo S; Yan W; McDonough SP; Lin N; Wu KJ; He H; Xiang H; Yang M; Moreira MA; Chang YF
    Vaccine; 2015 Mar; 33(13):1586-95. PubMed ID: 25698490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models.
    Bruxelle JF; Mizrahi A; Hoys S; Collignon A; Janoir C; Péchiné S
    Anaerobe; 2016 Feb; 37():78-84. PubMed ID: 26505926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.
    Karczewski J; Zorman J; Wang S; Miezeiewski M; Xie J; Soring K; Petrescu I; Rogers I; Thiriot DS; Cook JC; Chamberlin M; Xoconostle RF; Nahas DD; Joyce JG; Bodmer JL; Heinrichs JH; Secore S
    Vaccine; 2014 May; 32(24):2812-8. PubMed ID: 24662701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The immune response of two microbial antigens delivered intradermally, sublingually, or the combination thereof.
    Lee S; Picking WL; Tzipori S
    Microbes Infect; 2014 Sep; 16(9):796-803. PubMed ID: 25111827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models.
    Tian JH; Glenn G; Flyer D; Zhou B; Liu Y; Sullivan E; Wu H; Cummings JF; Elllingsworth L; Smith G
    Vaccine; 2017 Jul; 35(33):4079-4087. PubMed ID: 28669616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunogenicity of IMS 1113 plus soluble subunit and chimeric proteins containing Mycoplasma hyopneumoniae P97 C-terminal repeat regions.
    Barate AK; Cho Y; Truong QL; Hahn TW
    FEMS Microbiol Lett; 2014 Mar; 352(2):213-20. PubMed ID: 24461070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis.
    Zhang P; Yang QB; Balkovetz DF; Lewis JP; Clements JD; Michalek SM; Katz J
    Vaccine; 2005 Sep; 23(39):4734-44. PubMed ID: 15955601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor 5-dependent immunogenicity and protective efficacy of a recombinant fusion protein vaccine containing the nontoxic domains of Clostridium difficile toxins A and B and Salmonella enterica serovar typhimurium flagellin in a mouse model of Clostridium difficile disease.
    Ghose C; Verhagen JM; Chen X; Yu J; Huang Y; Chenesseau O; Kelly CP; Ho DD
    Infect Immun; 2013 Jun; 81(6):2190-6. PubMed ID: 23545305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished intestinal colonization by Clostridium difficile and immune response in mice after mucosal immunization with surface proteins of Clostridium difficile.
    Péchiné S; Janoir C; Boureau H; Gleizes A; Tsapis N; Hoys S; Fattal E; Collignon A
    Vaccine; 2007 May; 25(20):3946-54. PubMed ID: 17433506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.