BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18480335)

  • 41. Antiapoptotic proteins Bcl-2 and Bcl-XL inhibit Clostridium difficile toxin A-induced cell death in human epithelial cells.
    Matte I; Lane D; Côté E; Asselin AE; Fortier LC; Asselin C; Piché A
    Infect Immun; 2009 Dec; 77(12):5400-10. PubMed ID: 19797069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clostridium difficile toxins: mechanism of action and role in disease.
    Voth DE; Ballard JD
    Clin Microbiol Rev; 2005 Apr; 18(2):247-63. PubMed ID: 15831824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human alpha-defensins inhibit Clostridium difficile toxin B.
    Giesemann T; Guttenberg G; Aktories K
    Gastroenterology; 2008 Jun; 134(7):2049-58. PubMed ID: 18435932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470.
    Huelsenbeck J; Dreger S; Gerhard R; Barth H; Just I; Genth H
    Infect Immun; 2007 Feb; 75(2):801-9. PubMed ID: 17145947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol.
    Li S; Shi L; Yang Z; Feng H
    Pathog Dis; 2013 Feb; 67(1):11-8. PubMed ID: 23620115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The American Cockroach Peptide Periplanetasin-2 Blocks
    Hong J; Zhang P; Yoon IN; Hwang JS; Kang JK; Kim H
    J Microbiol Biotechnol; 2017 Apr; 27(4):694-700. PubMed ID: 28173695
    [No Abstract]   [Full Text] [Related]  

  • 47. Down-regulation of interleukin-16 in human mast cells HMC-1 by Clostridium difficile toxins A and B.
    Gerhard R; Queisser S; Tatge H; Meyer G; Dittrich-Breiholz O; Kracht M; Feng H; Just I
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):285-95. PubMed ID: 21267712
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Paparella AS; Cahill SM; Aboulache BL; Schramm VL
    ACS Chem Biol; 2022 Sep; 17(9):2507-2518. PubMed ID: 36038138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B.
    Dillon ST; Rubin EJ; Yakubovich M; Pothoulakis C; LaMont JT; Feig LA; Gilbert RJ
    Infect Immun; 1995 Apr; 63(4):1421-6. PubMed ID: 7890404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells.
    Maddala R; Reddy VN; Epstein DL; Rao V
    Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain.
    Gerhard R; Frenzel E; Goy S; Olling A
    J Med Microbiol; 2013 Sep; 62(Pt 9):1414-1422. PubMed ID: 23558138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography.
    Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR
    J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.
    Cowardin CA; Jackman BM; Noor Z; Burgess SL; Feig AL; Petri WA
    Infect Immun; 2016 Aug; 84(8):2317-2323. PubMed ID: 27271747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Super toxins from a super bug: structure and function of Clostridium difficile toxins.
    Davies AH; Roberts AK; Shone CC; Acharya KR
    Biochem J; 2011 Jun; 436(3):517-26. PubMed ID: 21615333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins.
    Popoff MR; Geny B
    J Med Microbiol; 2011 Aug; 60(Pt 8):1057-1069. PubMed ID: 21349986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-resolved cellular effects induced by TcdA from Clostridium difficile.
    Jochim N; Gerhard R; Just I; Pich A
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1089-100. PubMed ID: 24711272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of
    Heber S; Barthold L; Baier J; Papatheodorou P; Fois G; Frick M; Barth H; Fischer S
    Front Pharmacol; 2021; 12():809595. PubMed ID: 35058787
    [No Abstract]   [Full Text] [Related]  

  • 58. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for Rho protein regulation of renal tubular epithelial cell function.
    Anderson RJ; Ray CJ; Popoff MR
    Kidney Int; 2000 Nov; 58(5):1996-2006. PubMed ID: 11044220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clostridium difficile toxin B activates dual caspase-dependent and caspase-independent apoptosis in intoxicated cells.
    Qa'Dan M; Ramsey M; Daniel J; Spyres LM; Safiejko-Mroczka B; Ortiz-Leduc W; Ballard JD
    Cell Microbiol; 2002 Jul; 4(7):425-34. PubMed ID: 12102688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.