These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18480712)

  • 1. Early spontaneous leg movements in infants born with and without myelomeningocele.
    Rademacher N; Black DP; Ulrich BD
    Pediatr Phys Ther; 2008; 20(2):137-45. PubMed ID: 18480712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement analysis in neonates with spina bifida aperta.
    Sival DA; Brouwer OF; Bruggink JL; Vles JS; Staal-Schreinemachers AL; Sollie KM; Sauer PJ; Bos AF
    Early Hum Dev; 2006 Apr; 82(4):227-34. PubMed ID: 16256280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prognosis for motor impairment of lower limbs in myelomeningocele. Clinical and electromyographical evaluation of 22 cases.
    Fardin P; Drigo P; Seren F; Laverda AM; Negrin P
    Electromyogr Clin Neurophysiol; 1986 May; 26(3):163-7. PubMed ID: 3720646
    [No Abstract]   [Full Text] [Related]  

  • 4. Stepping responses of infants with myelomeningocele when supported on a motorized treadmill.
    Teulier C; Smith BA; Kubo M; Chang CL; Moerchen V; Murazko K; Ulrich BD
    Phys Ther; 2009 Jan; 89(1):60-72. PubMed ID: 19056853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximate entropy values demonstrate impaired neuromotor control of spontaneous leg activity in infants with myelomeningocele.
    Smith BA; Teulier C; Sansom J; Stergiou N; Ulrich BD
    Pediatr Phys Ther; 2011; 23(3):241-7. PubMed ID: 21829116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The quality of preterm infants' spontaneous movements: an early indicator of intelligence and behaviour at school age.
    Butcher PR; van Braeckel K; Bouma A; Einspieler C; Stremmelaar EF; Bos AF
    J Child Psychol Psychiatry; 2009 Aug; 50(8):920-30. PubMed ID: 19457048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlimb coordination in rhythmic leg movements: spontaneous and training-induced manifestations in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2008 Oct; 100(4):2225-34. PubMed ID: 18650307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic and qualitative analysis of lower-extremity movements in preterm infants with brain lesions.
    van der Heide J; Paolicelli PB; Boldrini A; Cioni G
    Phys Ther; 1999 Jun; 79(6):546-57. PubMed ID: 10372866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome.
    McKay SM; Angulo-Barroso RM
    Infant Behav Dev; 2006 Apr; 29(2):153-68. PubMed ID: 17138271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific postural support promotes variation in motor behaviour of infants with minor neurological dysfunction.
    de Graaf-Peters VB; De Groot-Hornstra AH; Dirks T; Hadders-Algra M
    Dev Med Child Neurol; 2006 Dec; 48(12):966-72. PubMed ID: 17109784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone Mineral Content in Infants With Myelomeningocele, With and Without Treadmill Stepping Practice.
    Lee DK; Muraszko K; Ulrich BD
    Pediatr Phys Ther; 2016; 28(1):24-32. PubMed ID: 27088680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous leg movements of infants with Down syndrome and nondisabled infants.
    Ulrich BD; Ulrich DA
    Child Dev; 1995 Dec; 66(6):1844-55. PubMed ID: 8556903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting patterns of bilateral coordination and lateral dominance in the leg movements of young infants.
    Thelen E; Ridley-Johnson R; Fisher DM
    Dev Psychobiol; 1983 Jan; 16(1):29-46. PubMed ID: 6825965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading the limb during rhythmic leg movements lengthens the duration of both flexion and extension in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2007 Feb; 97(2):1247-57. PubMed ID: 17151226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor development from 4 to 8 months corrected age in infants born at or less than 29 weeks' gestation.
    Pin TW; Darrer T; Eldridge B; Galea MP
    Dev Med Child Neurol; 2009 Sep; 51(9):739-45. PubMed ID: 19416342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration-induced motor responses of infants with and without myelomeningocele.
    Saavedra SL; Teulier C; Smith BA; Kim B; Beutler BD; Martin BJ; Ulrich BD
    Phys Ther; 2012 Apr; 92(4):537-50. PubMed ID: 22228610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of fidgety movements and early motor repertoire in predicting mobility outcomes in infants with myelomeningocele.
    Utsch F; Silva LB; da Cunha Júnior AL; Alves EP; Diniz Silva CR; Vilaça DMF; Moraes Antunes AA
    Eur J Paediatr Neurol; 2024 Jul; 51():41-48. PubMed ID: 38796917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From spontaneous to instrumental behavior: kinematic analysis of movement changes during very early learning.
    Thelen E; Fisher DM
    Child Dev; 1983 Feb; 54(1):129-40. PubMed ID: 6831981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functioning of peripheral Ia pathways in infants with myelomeningocele.
    Lee D; Teulier C; Ulrich BD; Martin B
    Infant Behav Dev; 2013 Feb; 36(1):147-61. PubMed ID: 23318347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the segmental kinematics of spontaneous infant movements.
    Karch D; Kim KS; Wochner K; Pietz J; Dickhaus H; Philippi H
    J Biomech; 2008 Sep; 41(13):2860-7. PubMed ID: 18707688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.