BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18480740)

  • 1. Radiometal complexes: characterization and relevant in vitro studies.
    Jurisson S; Cutler C; Smith SV
    Q J Nucl Med Mol Imaging; 2008 Sep; 52(3):222-34. PubMed ID: 18480740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of electrospray mass spectrometry for the characterization, design, and development of nitrido technetium and rhenium heterocomplexes as potential radiopharmaceuticals.
    Tisato F; Bolzati C; Porchia M; Refosco F
    Mass Spectrom Rev; 2004; 23(5):309-32. PubMed ID: 15264232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine-tert-nitrogen-phenol ligands: N,N,O-Type tripodal chelates for the [M(CO)3]+ core (M = Re, Tc).
    Lim NC; Ewart CB; Bowen ML; Ferreira CL; Barta CA; Adam MJ; Orvig C
    Inorg Chem; 2008 Feb; 47(4):1337-45. PubMed ID: 18189350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine.
    Whetter JN; Śmiłowicz D; Boros E
    Acc Chem Res; 2024 Mar; 57(6):933-944. PubMed ID: 38501206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals.
    Bartholomä M; Valliant J; Maresca KP; Babich J; Zubieta J
    Chem Commun (Camb); 2009 Feb; (5):493-512. PubMed ID: 19283279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted synthesis of 3,1,2- and 2,1,8-Re(I) and 99mTc(I)-metallocarborane complexes.
    Green AE; Causey PW; Louie AS; Armstrong AF; Harrington LE; Valliant JF
    Inorg Chem; 2006 Jul; 45(15):5727-9. PubMed ID: 16841972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labelling monoclonal antibodies with macrocyclic radiometal complexes. A challenge for coordination chemists.
    Kaden TA
    Dalton Trans; 2006 Aug; (30):3617-23. PubMed ID: 16865171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals.
    Donnelly PS
    Dalton Trans; 2011 Feb; 40(5):999-1010. PubMed ID: 21203624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Click-to-chelate": design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest.
    Struthers H; Spingler B; Mindt TL; Schibli R
    Chemistry; 2008; 14(20):6173-83. PubMed ID: 18494020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro assays for assessing the potential for copper complexes to function as radiopharmaceutical agents.
    Barnard PJ; Bayly SR; Holland JP; Dilworth JR; Waghorn PA
    Q J Nucl Med Mol Imaging; 2008 Sep; 52(3):235-44. PubMed ID: 18551094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridylthiocarbazide complexes of rhenium with potential radiopharmaceutical applications.
    Clarke C; Cowley AR; Dilworth JR; Donnelly PS
    Dalton Trans; 2004 Aug; (16):2402-3. PubMed ID: 15303150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dithiocarbamate complexes as radiopharmaceuticals for medical imaging.
    Berry DJ; Torres Martin de Rosales R; Charoenphun P; Blower PJ
    Mini Rev Med Chem; 2012 Oct; 12(12):1174-83. PubMed ID: 22931590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
    Zanzonico P; Dauer L; St Germain J
    Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhenium and 99m-technetium complexes of monosaccharide based tripodal triamines as potential radio imaging agents.
    Gottschaldt M; Bohlender C; Müller D; Klette I; Baum RP; Yano S; Schubert US
    Dalton Trans; 2009 Jul; (26):5148-54. PubMed ID: 19562175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matching chelators to radiometals for radiopharmaceuticals.
    Price EW; Orvig C
    Chem Soc Rev; 2014 Jan; 43(1):260-90. PubMed ID: 24173525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High--valent technetium chemistry-new opportunities for radiopharmaceutical developments.
    Braband H
    J Labelled Comp Radiopharm; 2014 Apr; 57(4):270-4. PubMed ID: 24347394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability, water exchange, and anion binding studies on lanthanide(III) complexes with a macrocyclic ligand based on 1,7-diaza-12-crown-4: extremely fast water exchange on the Gd3+ complex.
    Pálinkás Z; Roca-Sabio A; Mato-Iglesias M; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T; Tóth E
    Inorg Chem; 2009 Sep; 48(18):8878-89. PubMed ID: 19655713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications.
    Hu A; Wilson JJ
    Acc Chem Res; 2022 Mar; 55(6):904-915. PubMed ID: 35230803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-automated system for concentration of rhenium-188 for radiopharmaceutical applications.
    Wunderlich G; Hartmann H; Andreeff M; Kotzerke J
    Appl Radiat Isot; 2008 Dec; 66(12):1876-80. PubMed ID: 18524608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro receptor binding assays: general methods and considerations.
    Bigott-Hennkens HM; Dannoon S; Lewis MR; Jurisson SS
    Q J Nucl Med Mol Imaging; 2008 Sep; 52(3):245-53. PubMed ID: 18475249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.