These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18480968)
1. Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon co-administration with ceramide using biodegradable polymeric nanoparticles. Deshpande D; Devalapally H; Amiji M Pharm Res; 2008 Aug; 25(8):1936-47. PubMed ID: 18480968 [TBL] [Abstract][Full Text] [Related]
2. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Devalapally H; Duan Z; Seiden MV; Amiji MM Int J Cancer; 2007 Oct; 121(8):1830-8. PubMed ID: 17557285 [TBL] [Abstract][Full Text] [Related]
3. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Shahin M; Lavasanifar A Int J Pharm; 2010 Apr; 389(1-2):213-22. PubMed ID: 20080163 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. Desai A; Vyas T; Amiji M J Pharm Sci; 2008 Jul; 97(7):2745-56. PubMed ID: 17854074 [TBL] [Abstract][Full Text] [Related]
5. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Devalapally H; Duan Z; Seiden MV; Amiji MM Clin Cancer Res; 2008 May; 14(10):3193-203. PubMed ID: 18483388 [TBL] [Abstract][Full Text] [Related]
6. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D; Little S; Langer R; Amiji M Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Shenoy D; Little S; Langer R; Amiji M Pharm Res; 2005 Dec; 22(12):2107-14. PubMed ID: 16254763 [TBL] [Abstract][Full Text] [Related]
8. Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Wang C; Wang Y; Wang Y; Fan M; Luo F; Qian Z Int J Pharm; 2011 Jul; 414(1-2):251-9. PubMed ID: 21596124 [TBL] [Abstract][Full Text] [Related]
9. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039 [TBL] [Abstract][Full Text] [Related]
10. Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: In vitro and in vivo evaluation. Hu J; Fu S; Peng Q; Han Y; Xie J; Zan N; Chen Y; Fan J Int J Pharm; 2017 Jan; 516(1-2):313-322. PubMed ID: 27884713 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel. Battogtokh G; Ko YT J Drug Target; 2014 Nov; 22(9):813-21. PubMed ID: 24964055 [TBL] [Abstract][Full Text] [Related]
12. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. van Vlerken LE; Duan Z; Seiden MV; Amiji MM Cancer Res; 2007 May; 67(10):4843-50. PubMed ID: 17510414 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Xie J; Wang CH Pharm Res; 2005 Dec; 22(12):2079-90. PubMed ID: 16132339 [TBL] [Abstract][Full Text] [Related]
14. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Devalapally H; Shenoy D; Little S; Langer R; Amiji M Cancer Chemother Pharmacol; 2007 Mar; 59(4):477-84. PubMed ID: 16862429 [TBL] [Abstract][Full Text] [Related]
15. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Yadav S; van Vlerken LE; Little SR; Amiji MM Cancer Chemother Pharmacol; 2009 Mar; 63(4):711-22. PubMed ID: 18618115 [TBL] [Abstract][Full Text] [Related]
16. Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. Deshpande D; Janero DR; Amiji M Nanomedicine; 2013 Oct; 9(7):885-94. PubMed ID: 23473744 [TBL] [Abstract][Full Text] [Related]
17. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Xin H; Chen L; Gu J; Ren X; Wei Z; Luo J; Chen Y; Jiang X; Sha X; Fang X Int J Pharm; 2010 Dec; 402(1-2):238-47. PubMed ID: 20934500 [TBL] [Abstract][Full Text] [Related]
18. Paclitaxel-loaded PCL-TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane®. Bernabeu E; Helguera G; Legaspi MJ; Gonzalez L; Hocht C; Taira C; Chiappetta DA Colloids Surf B Biointerfaces; 2014 Jan; 113():43-50. PubMed ID: 24060929 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Yin L; Xu S; Feng Z; Deng H; Zhang J; Gao H; Deng L; Tang H; Dong A Biomater Sci; 2017 Mar; 5(4):698-706. PubMed ID: 28184404 [TBL] [Abstract][Full Text] [Related]
20. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. Potineni A; Lynn DM; Langer R; Amiji MM J Control Release; 2003 Jan; 86(2-3):223-34. PubMed ID: 12526819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]