BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18481014)

  • 1. In vitro hepatoprotective compounds from Suaeda glauca.
    An RB; Sohn DH; Jeong GS; Kim YC
    Arch Pharm Res; 2008 May; 31(5):594-7. PubMed ID: 18481014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bakuchiol: a hepatoprotective compound of Psoralea corylifolia on tacrine-induced cytotoxicity in Hep G2 cells.
    Cho H; Jun JY; Song EK; Kang KH; Baek HY; Ko YS; Kim YC
    Planta Med; 2001 Nov; 67(8):750-1. PubMed ID: 11731920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense.
    Oh H; Kim DH; Cho JH; Kim YC
    J Ethnopharmacol; 2004 Dec; 95(2-3):421-4. PubMed ID: 15507369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sesquiterpenes with hepatoprotective activity from Cnidium monnieri on tacrine-induced cytotoxicity in Hep G2 cells.
    Oh H; Kim JS; Song EK; Cho H; Kim DH; Park SE; Lee HS; Kim YC
    Planta Med; 2002 Aug; 68(8):748-9. PubMed ID: 12221602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Furocoumarins from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells.
    Oh H; Lee HS; Kim T; Chai KY; Chung HT; Kwon TO; Jun JY; Jeong OS; Kim YC; Yun YG
    Planta Med; 2002 May; 68(5):463-4. PubMed ID: 12058329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromone glycosides and hepatoprotective constituents of Hypericum erectum.
    An RB; Jeong GS; Beom JS; Sohn DH; Kim YC
    Arch Pharm Res; 2009 Oct; 32(10):1393-7. PubMed ID: 19898802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatoprotective constituents from the roots and stems of Erycibe hainanesis.
    Song S; Li Y; Feng Z; Jiang J; Zhang P
    J Nat Prod; 2010 Feb; 73(2):177-84. PubMed ID: 20092289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic constituents of galla Rhois with hepatoprotective effects on tacrine- and nitrofurantoin-induced cytotoxicity in Hep G2 cells.
    An RB; Oh H; Kim YC
    Biol Pharm Bull; 2005 Nov; 28(11):2155-7. PubMed ID: 16272710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Caffeoylquinic acid derivatives from leaves of Lonicera japonica].
    Ma J; Li N; Li X
    Zhongguo Zhong Yao Za Zhi; 2009 Sep; 34(18):2346-8. PubMed ID: 20030085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatoprotective compounds of the roots of Cudrania tricuspidata on tacrine-induced cytotoxicity in Hep G2 cells.
    An RB; Sohn DH; Kim YC
    Biol Pharm Bull; 2006 Apr; 29(4):838-40. PubMed ID: 16595932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribuli fructus constituents protect against tacrine-induced cytotoxicity in HepG2 cells.
    Byun E; Jeong GS; An RB; Min TS; Kim YC
    Arch Pharm Res; 2010 Jan; 33(1):67-70. PubMed ID: 20191345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells.
    Kim YC; An RB; Yoon NY; Nam TJ; Choi JS
    Arch Pharm Res; 2005 Dec; 28(12):1376-80. PubMed ID: 16392671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models.
    Basnet P; Matsushige K; Hase K; Kadota S; Namba T
    Biol Pharm Bull; 1996 Nov; 19(11):1479-84. PubMed ID: 8951168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chemical constituents from herb of Solanum lyratum].
    Yang L; Feng F; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2009 Jul; 34(14):1805-8. PubMed ID: 19894512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae).
    Ooi LS; Wang H; He Z; Ooi VE
    J Ethnopharmacol; 2006 Jun; 106(2):187-91. PubMed ID: 16469463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage.
    Hwang YP; Yun HJ; Chun HK; Chung YC; Kim HK; Jeong MH; Yoon TR; Jeong HG
    Chem Biol Interact; 2009 Oct; 181(3):366-76. PubMed ID: 19647727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl₄-induced toxicity in vitro.
    Kan S; Cheung MW; Zhou Y; Ho WS
    J Food Sci; 2014 Feb; 79(2):C147-54. PubMed ID: 24456346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding study of Flos Lonicerae Japonicae with bovine serum albumin using centrifugal ultrafiltration and liquid chromatography.
    Qian ZM; Qin SJ; Yi L; Li HJ; Li P; Wen XD
    Biomed Chromatogr; 2008 Feb; 22(2):202-6. PubMed ID: 18004737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective Caffeoylquinic Acid Derivatives from the Flowers of Chrysanthemum morifolium.
    Yang PF; Feng ZM; Yang YN; Jiang JS; Zhang PC
    J Nat Prod; 2017 Apr; 80(4):1028-1033. PubMed ID: 28248102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of anti-bacterial activity of three types of di-O-caffeoylquinic acids in Lonicera japonica flowers based on microcalorimetry.
    Han J; Lv QY; Jin SY; Zhang TT; Jin SX; Li XY; Yuan HL
    Chin J Nat Med; 2014 Feb; 12(2):108-13. PubMed ID: 24636060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.