BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1848103)

  • 1. Studies on plantacyanin. IV. Reconstitution with Cu-thionein, oxidation by cytochrome oxidase and autooxidation in the presence of cardiolipin.
    Nersissian AM; Melkonyan VZ; Nalbandyan RM
    Biochim Biophys Acta; 1991 Feb; 1076(3):337-42. PubMed ID: 1848103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of stellacyanin as a case of direct Cu(I) transfer between yeast copper thionein and 'blue' copper apoprotein.
    Hartmann HJ; Morpurgo L; Desideri A; Rotilio G; Weser U
    FEBS Lett; 1983 Feb; 152(1):94-6. PubMed ID: 6220920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular biology of copper. A circular dichroism study on copper complexes of thionein and penicillamine.
    Rupp H; Voelter W; Weser U
    Hoppe Seylers Z Physiol Chem; 1975 Jun; 356(6):755-65. PubMed ID: 241690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of neurocupreins by Cu-thioneins.
    Melkonyan VZ; Mikaelyan MV; Nalbandyan RM
    Neurochem Res; 1989 Jun; 14(6):589-91. PubMed ID: 2548108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of beef-heart cytochrome c oxidase by cardiolipin and analogues of cardiolipin.
    Abramovitch DA; Marsh D; Powell GL
    Biochim Biophys Acta; 1990 Oct; 1020(1):34-42. PubMed ID: 2171644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase.
    Speck SH; Dye D; Margoliash E
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):347-51. PubMed ID: 6320180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(I) transfer into apo-stellacyanin using copper(I)-thiourea as a copper-thionein model.
    Morpurgo L; Rotilio G; Hartmann HJ; Weser U
    Biochem J; 1984 Aug; 221(3):923-5. PubMed ID: 6089750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism.
    Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G
    Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of Cu(I)-thionein by enzymically generated H2O2.
    Hartmann HJ; Gärtner A; Weser U
    Hoppe Seylers Z Physiol Chem; 1984 Nov; 365(11):1355-9. PubMed ID: 6548980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-dependent properties of metallothionein. Replacement in vitro of zinc in zinc-thionein with copper.
    Suzuki KT; Maitani T
    Biochem J; 1981 Nov; 199(2):289-95. PubMed ID: 7340805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on plantacyanin. I. Distribution in the plant kingdom, subcellular localization and physicochemical properties.
    Aikazyan VTs; Nalbandyan RM
    Biochim Biophys Acta; 1981 Feb; 667(2):421-32. PubMed ID: 6260219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of hydrazine on properties of cytochrome oxidase].
    Markosian KA; Paĭtian NA; Nalbandian RM
    Biokhimiia; 1988 Jul; 53(7):1136-43. PubMed ID: 2846078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Cu(I)-thiolate clusters during the proteolysis of Cu-thionein.
    Weser U; Mutter W; Hartmann HJ
    FEBS Lett; 1986 Mar; 197(1-2):258-62. PubMed ID: 3081372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion and ionic strength effects upon the oxidation of cytochrome c by cytochrome c oxidase.
    Brooks SP; Nicholls P
    Biochim Biophys Acta; 1982 Apr; 680(1):33-43. PubMed ID: 6280764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper electron-nuclear double resonance of cytochrome c oxidase.
    Hoffman BM; Roberts JE; Swanson M; Speck SH; Margoliash E
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1452-6. PubMed ID: 6246493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of non-esterified fatty acids on respiratory control of reconstituted cytochrome-c oxidase.
    Thiel C; Kadenbach B
    FEBS Lett; 1989 Jul; 251(1-2):270-4. PubMed ID: 2546826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of cytochrome a in the proton pump of cytochrome-c oxidase.
    Mueller M; Azzi A
    Biochimie; 1986 Mar; 68(3):401-6. PubMed ID: 2427122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase does not inhibit the oxidation of cytochrome c and cytochrome oxidase.
    Markossian KA; Nalbandyan RM
    Biochem Biophys Res Commun; 1975 Dec; 67(3):870-6. PubMed ID: 173336
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of pH and ionic strength on the steady-state activity of isolated cytochrome C oxidase.
    Wilms J; van Rijn JL; Van Gelder BF
    Biochim Biophys Acta; 1980 Nov; 593(1):17-23. PubMed ID: 6252963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.