BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18481050)

  • 1. Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance.
    Ostatná V; Vaisocherová H; Homola J; Hianik T
    Anal Bioanal Chem; 2008 Jul; 391(5):1861-9. PubMed ID: 18481050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X
    Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards maintenance-free biosensors for hundreds of bind/release cycles.
    Potyrailo RA; Murray AJ; Nagraj N; Pris AD; Ashe JM; Todorovic M
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2174-8. PubMed ID: 25476587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the Benefits of Biotin-Streptavidin Aptamer Immobilization with the Versatility of Ni-NTA Regeneration Strategies for SPR.
    Hanson EK; Whelan RJ
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamers and biosensors.
    Gronewold TM
    Methods Mol Biol; 2009; 535():209-22. PubMed ID: 19377993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ biosensing with a surface plasmon resonance fiber grating aptasensor.
    Shevchenko Y; Francis TJ; Blair DA; Walsh R; DeRosa MC; Albert J
    Anal Chem; 2011 Sep; 83(18):7027-34. PubMed ID: 21815621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time monitoring of thrombin interactions with its aptamers: insights into the sandwich complex formation.
    Daniel C; Mélaïne F; Roupioz Y; Livache T; Buhot A
    Biosens Bioelectron; 2013 Feb; 40(1):186-92. PubMed ID: 22863116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance.
    Polonschii C; David S; Tombelli S; Mascini M; Gheorghiu M
    Talanta; 2010 Mar; 80(5):2157-64. PubMed ID: 20152466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions.
    Di Primo C; Dausse E; Toulmé JJ
    Methods Mol Biol; 2011; 764():279-300. PubMed ID: 21748648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Charged Small Molecule-Aptamer Interactions with Surface Plasmon Resonance.
    Froehlich CE; He J; Haynes CL
    Anal Chem; 2023 Feb; 95(5):2639-2644. PubMed ID: 36704862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a modified gold platform for the development of a label-free anti-thrombin aptasensor.
    Jalit Y; Gutierrez FA; Dubacheva G; Goyer C; Coche-Guerente L; Defrancq E; Labbé P; Rivas GA; Rodríguez MC
    Biosens Bioelectron; 2013 Mar; 41():424-9. PubMed ID: 23017682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical detection systems using immobilized aptamers.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Biosens Bioelectron; 2011 May; 26(9):3725-36. PubMed ID: 21419619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique.
    Hou Y; Liu J; Hong M; Li X; Ma Y; Yue Q; Li CZ
    Biosens Bioelectron; 2017 Jun; 92():259-265. PubMed ID: 28231553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene.
    Wang L; Zhu C; Han L; Jin L; Zhou M; Dong S
    Chem Commun (Camb); 2011 Jul; 47(27):7794-6. PubMed ID: 21633745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
    Centi S; Tombelli S; Minunni M; Mascini M
    Anal Chem; 2007 Feb; 79(4):1466-73. PubMed ID: 17297945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole.
    Miodek A; Poturnayová A; Snejdárková M; Hianik T; Korri-Youssoufi H
    Anal Bioanal Chem; 2013 Mar; 405(8):2505-14. PubMed ID: 23318762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma.
    Trapaidze A; Hérault JP; Herbert JM; Bancaud A; Gué AM
    Biosens Bioelectron; 2016 Apr; 78():58-66. PubMed ID: 26594887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotin-containing phospholipid vesicle layer formed on self-assembled monolayer of a saccharide-terminated alkyl disulfide for surface plasmon resonance biosensing.
    Ishizuka-Katsura Y; Wazawa T; Ban T; Morigaki K; Aoyama S
    J Biosci Bioeng; 2008 May; 105(5):527-35. PubMed ID: 18558345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.