These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18481070)

  • 1. Energy expenditure during flight in relation to body mass: effects of natural increases in mass and artificial load in Rose Coloured Starlings.
    Schmidt-Wellenburg CA; Engel S; Visser GH
    J Comp Physiol B; 2008 Aug; 178(6):767-77. PubMed ID: 18481070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic costs of avian flight in relation to flight velocity: a study in Rose Coloured Starlings (Sturnus roseus, Linnaeus).
    Engel S; Biebach H; Visser GH
    J Comp Physiol B; 2006 Jun; 176(5):415-27. PubMed ID: 16425018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure and wing beat frequency in relation to body mass in free flying Barn Swallows (Hirundo rustica).
    Schmidt-Wellenburg CA; Biebach H; Daan S; Visser GH
    J Comp Physiol B; 2007 Apr; 177(3):327-37. PubMed ID: 17171355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic adjustments to increasing foraging costs of starlings in a closed economy.
    Wiersma P; Salomons HM; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4099-108. PubMed ID: 16244169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic power, mechanical power and efficiency during wind tunnel flight by the European starling Sturnus vulgaris.
    Ward S; Möller U; Rayner JM; Jackson DM; Bilo D; Nachtigall W; Speakman JR
    J Exp Biol; 2001 Oct; 204(Pt 19):3311-22. PubMed ID: 11606605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical independence of wingbeat and breathing in starlings.
    Banzett RB; Nations CS; Wang N; Butler JP; Lehr JL
    Respir Physiol; 1992 Jul; 89(1):27-36. PubMed ID: 1518985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and heat balance during flight in the rose-colored starling (Sturnus roseus).
    Engel S; Biebach H; Visser GH
    Physiol Biochem Zool; 2006; 79(4):763-74. PubMed ID: 16826502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic power of European starlings Sturnus vulgaris during flight in a wind tunnel, estimated from heat transfer modelling, doubly labelled water and mask respirometry.
    Ward S; Möller U; Rayner JM; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 2004 Nov; 207(Pt 24):4291-8. PubMed ID: 15531650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight muscle protein damage during endurance flight is related to energy expenditure but not dietary polyunsaturated fatty acids in a migratory bird.
    Dick MF; Guglielmo CG
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30824569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a 180-degree U-turn maneuver executed by a hipposiderid bat.
    Windes P; Tafti DK; Müller R
    PLoS One; 2020; 15(11):e0241489. PubMed ID: 33141874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes.
    DeMoranville KJ; Carter WA; Pierce BJ; McWilliams SR
    Am J Physiol Regul Integr Comp Physiol; 2020 Dec; 319(6):R637-R652. PubMed ID: 32966121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporative cooling and water balance during flight in birds.
    Torre-Bueno JR
    J Exp Biol; 1978 Aug; 75():231-6. PubMed ID: 702042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight energetics of sphinx moths: power input during hovering flight.
    Casey TM
    J Exp Biol; 1976 Jun; 64(3):529-43. PubMed ID: 932631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian pectoral muscle size rapidly tracks body mass changes during flight, fasting and fuelling.
    Lindström A; Kvist A; Piersma T; Dekinga A; Dietz MW
    J Exp Biol; 2000 Mar; 203(Pt 5):913-9. PubMed ID: 10667974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations.
    Bishop CM; Spivey RJ; Hawkes LA; Batbayar N; Chua B; Frappell PB; Milsom WK; Natsagdorj T; Newman SH; Scott GR; Takekawa JY; Wikelski M; Butler PJ
    Science; 2015 Jan; 347(6219):250-4. PubMed ID: 25593180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flight energetics, caste dimorphism and scaling properties in the bumblebee,
    Billardon F; Darveau CA
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30352821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.