These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 18481298)
1. Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of Helicoverpa armigera. Hu YH; Leung DW; Kang L; Wang CZ Arch Insect Biochem Physiol; 2008 Jun; 68(2):113-21. PubMed ID: 18481298 [TBL] [Abstract][Full Text] [Related]
2. Characterization of glucose-induced glucose oxidase gene and protein expression in Helicoverpa armigera larvae. Tang Q; Hu Y; Kang L; Wang CZ Arch Insect Biochem Physiol; 2012 Feb; 79(2):104-19. PubMed ID: 22392771 [TBL] [Abstract][Full Text] [Related]
11. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. Musser RO; Farmer E; Peiffer M; Williams SA; Felton GW J Chem Ecol; 2006 May; 32(5):981-92. PubMed ID: 16739018 [TBL] [Abstract][Full Text] [Related]
12. Expressional divergence of insect GOX genes: From specialist to generalist glucose oxidase. Yang L; Wang X; Bai S; Li X; Gu S; Wang CZ; Li X J Insect Physiol; 2017 Jul; 100():21-27. PubMed ID: 28512014 [TBL] [Abstract][Full Text] [Related]
13. Survey of a salivary effector in caterpillars: glucose oxidase variation and correlation with host range. Eichenseer H; Mathews MC; Powell JS; Felton GW J Chem Ecol; 2010 Aug; 36(8):885-97. PubMed ID: 20632075 [TBL] [Abstract][Full Text] [Related]
14. In vivo inhibition of Helicoverpa armigera gut pro-proteinase activation by non-host plant protease inhibitors. Parde VD; Sharma HC; Kachole MS J Insect Physiol; 2010 Sep; 56(9):1315-24. PubMed ID: 20416317 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. Erlandson MA; Hegedus DD; Baldwin D; Noakes A; Toprak U Arch Insect Biochem Physiol; 2010 Oct; 75(2):70-91. PubMed ID: 20824821 [TBL] [Abstract][Full Text] [Related]
16. Effects of larval host plants on over-wintering physiological dynamics and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Liu Z; Gong P; Heckel DG; Wei W; Sun J; Li D J Insect Physiol; 2009 Jan; 55(1):1-9. PubMed ID: 18761347 [TBL] [Abstract][Full Text] [Related]
17. Parasitic Wasp Mediates Plant Perception of Insect Herbivores. Tan CW; Peiffer M; Hoover K; Rosa C; Felton GW J Chem Ecol; 2019 Dec; 45(11-12):972-981. PubMed ID: 31713110 [TBL] [Abstract][Full Text] [Related]
18. Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. Celorio-Mancera Mde L; Ytterberg AJ; Rutishauser D; Janz N; Zubarev RA Insect Biochem Mol Biol; 2015 Jun; 61():34-45. PubMed ID: 25934166 [TBL] [Abstract][Full Text] [Related]
19. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar. Despland E; Noseworthy M J Exp Biol; 2006 Apr; 209(Pt 7):1301-9. PubMed ID: 16547301 [TBL] [Abstract][Full Text] [Related]
20. Patterns and mechanisms of growth of fifth-instar Manduca sexta caterpillars following exposure to low- or high-protein food during early instars. Woods HA Physiol Biochem Zool; 1999; 72(4):445-54. PubMed ID: 10438682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]