These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18481310)

  • 1. Modeling microstructure development and release kinetics in controlled drug release coatings.
    Saylor DM; Kim CS; Patwardhan DV; Warren JA
    J Pharm Sci; 2009 Jan; 98(1):169-86. PubMed ID: 18481310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling solvent evaporation during the manufacture of controlled drug-release coatings and the impact on release kinetics.
    Kim CS; Saylor DM; McDermott MK; Patwardhan DV; Warren JA
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):688-99. PubMed ID: 19213052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of aqueous polymeric controlled release film coatings.
    Siepmann J; Siepmann F
    Int J Pharm; 2013 Dec; 457(2):437-45. PubMed ID: 24126037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer blends for controlled release coatings.
    Siepmann F; Siepmann J; Walther M; MacRae RJ; Bodmeier R
    J Control Release; 2008 Jan; 125(1):1-15. PubMed ID: 18022722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fiber distribution model for predicting drug release rates.
    Petlin DG; Amarah AA; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Jul; 258():218-225. PubMed ID: 28526437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular automata model for swelling-controlled drug release.
    Laaksonen H; Hirvonen J; Laaksonen T
    Int J Pharm; 2009 Oct; 380(1-2):25-32. PubMed ID: 19563871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights.
    Wu N; Wang LS; Tan DC; Moochhala SM; Yang YY
    J Control Release; 2005 Feb; 102(3):569-81. PubMed ID: 15681080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.
    Chavanpatil MD; Khdair A; Patil Y; Handa H; Mao G; Panyam J
    J Pharm Sci; 2007 Dec; 96(12):3379-89. PubMed ID: 17721942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structured drug-eluting bioresorbable films: microstructure and release profile.
    Zilberman M; Shifrovitch Y; Aviv M; Hershkovitz M
    J Biomater Appl; 2009 Mar; 23(5):385-406. PubMed ID: 18632769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimised process and formulation conditions for extended release dry polymer powder-coated pellets.
    Terebesi I; Bodmeier R
    Eur J Pharm Biopharm; 2010 May; 75(1):63-70. PubMed ID: 20079833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier.
    Narasimhan B; Peppas NA
    J Pharm Sci; 1997 Mar; 86(3):297-304. PubMed ID: 9050796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Understanding Drug Release From Biodegradable Polymer Microspheres of Different Erosion Kinetics Modes.
    You S; Yang Z; Wang CH
    J Pharm Sci; 2016 Jun; 105(6):1934-1946. PubMed ID: 27238490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the use of viscosifying agents as dispersion media on the drug release properties from PLGA nanoparticles.
    Dillen K; Weyenberg W; Vandervoort J; Ludwig A
    Eur J Pharm Biopharm; 2004 Nov; 58(3):539-49. PubMed ID: 15451528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides.
    Shen E; Kipper MJ; Dziadul B; Lim MK; Narasimhan B
    J Control Release; 2002 Jul; 82(1):115-25. PubMed ID: 12106982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the size of biodegradable microparticles on drug release: experiment and theory.
    Siepmann J; Faisant N; Akiki J; Richard J; Benoit JP
    J Control Release; 2004 Apr; 96(1):123-34. PubMed ID: 15063035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions.
    Zhang M; Yang Z; Chow LL; Wang CH
    J Pharm Sci; 2003 Oct; 92(10):2040-56. PubMed ID: 14502543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid/Hollow depots for drug delivery, part 1: effect of drug characteristics and polymer molecular weight on the phase-inversion dynamics, depot morphology, and drug release.
    Liu H; Venkatraman SS
    J Pharm Sci; 2014 Feb; 103(2):485-95. PubMed ID: 24357252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffuse-interface theory for structure formation and release behavior in controlled drug release systems.
    Saylor DM; Kim CS; Patwardhan DV; Warren JA
    Acta Biomater; 2007 Nov; 3(6):851-64. PubMed ID: 17553761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.