BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18481312)

  • 21. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects.
    Huri PY; Huri G; Yasar U; Ucar Y; Dikmen N; Hasirci N; Hasirci V
    Biomed Mater; 2013 Aug; 8(4):045009. PubMed ID: 23782488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encapsulated boron as an osteoinductive agent for bone scaffolds.
    Gümüşderelioğlu M; Tunçay EÖ; Kaynak G; Demirtaş TT; Aydın ST; Hakkı SS
    J Trace Elem Med Biol; 2015; 31():120-8. PubMed ID: 26004902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro.
    Shi X; Wang Y; Varshney RR; Ren L; Gong Y; Wang DA
    Eur J Pharm Sci; 2010 Jan; 39(1-3):59-67. PubMed ID: 19895885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive glass-based scaffolds for bone tissue engineering.
    Will J; Gerhardt LC; Boccaccini AR
    Adv Biochem Eng Biotechnol; 2012; 126():195-226. PubMed ID: 22085919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomedical approaches to improve bone healing in distraction osteogenesis: a current update and review.
    Konofaos P; Kashyap A; Ver Halen J
    Biomed Tech (Berl); 2014 Jun; 59(3):177-83. PubMed ID: 24399674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone tissue engineering: state of the union.
    Shrivats AR; McDermott MC; Hollinger JO
    Drug Discov Today; 2014 Jun; 19(6):781-6. PubMed ID: 24768619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering.
    Song W; Ren W; Wan C; Esquivel AO; Shi T; Blasier R; Markel DC
    J Biomed Mater Res A; 2011 Sep; 98(3):359-71. PubMed ID: 21626667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits.
    Shuqiang M; Kunzheng W; Xiaoqiang D; Wei W; Mingyu Z; Daocheng W
    J Plast Reconstr Aesthet Surg; 2008 Dec; 61(12):1558-60. PubMed ID: 18676213
    [No Abstract]   [Full Text] [Related]  

  • 35. Growth factor-eluting technologies for bone tissue engineering.
    Nyberg E; Holmes C; Witham T; Grayson WL
    Drug Deliv Transl Res; 2016 Apr; 6(2):184-94. PubMed ID: 25967594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate.
    Kim H; Suh H; Jo SA; Kim HW; Lee JM; Kim EH; Reinwald Y; Park SH; Min BH; Jo I
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1053-60. PubMed ID: 15922303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stem cells combined with bone graft substitutes in skeletal tissue engineering.
    Gamie Z; Tran GT; Vyzas G; Korres N; Heliotis M; Mantalaris A; Tsiridis E
    Expert Opin Biol Ther; 2012 Jun; 12(6):713-29. PubMed ID: 22500826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring vancomycin release from beta-TCP/agarose scaffolds.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    Eur J Pharm Sci; 2009 Jun; 37(3-4):249-56. PubMed ID: 19491012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2.
    Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S
    Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.