These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 18482376)

  • 21. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants.
    Li KW; Chen CJ
    Appl Ergon; 2004 Nov; 35(6):499-507. PubMed ID: 15374757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors influencing restaurant worker perception of floor slipperiness.
    Courtney TK; Huang YH; Verma SK; Chang WR; Li KW; Filiaggi AJ
    J Occup Environ Hyg; 2006 Nov; 3(11):592-8. PubMed ID: 16939985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of workers' shoe wear on objective and subjective assessment of slipperiness.
    Chiou SY; Bhattacharya A; Succop PA
    Am Ind Hyg Assoc J; 1996 Sep; 57(9):825-31. PubMed ID: 8865591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking.
    Burnfield JM; Powers CM
    J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance.
    Burnfield JM; Powers CM
    Ergonomics; 2006 Aug; 49(10):982-95. PubMed ID: 16803728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces.
    Yamaguchi T; Hsu J; Li Y; Maki BE
    Appl Ergon; 2015 Nov; 51():9-17. PubMed ID: 26154199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Workers' experience of slipping in U.S. limited-service restaurants.
    Verma SK; Chang WR; Courtney TK; Lombardi DA; Huang YH; Brennan MJ; Mittleman MA; Perry MJ
    J Occup Environ Hyg; 2010 Sep; 7(9):491-500. PubMed ID: 20552500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface.
    Ziaei M; Nabavi SH; Mokhtarinia HR; Tabatabai Ghomshe SF
    Int J Occup Environ Med; 2013 Jan; 4(1):27-35. PubMed ID: 23279795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of slip testing parameters on measured coefficient of friction.
    Beschorner KE; Redfern MS; Porter WL; Debski RE
    Appl Ergon; 2007 Nov; 38(6):773-80. PubMed ID: 17196925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Floor/shoe slip resistance measurement.
    Chaffin DB; Woldstad JC; Trujillo A
    Am Ind Hyg Assoc J; 1992 May; 53(5):283-9. PubMed ID: 1609738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in Friction Performance between New and Worn Shoes.
    Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical modeling of footwear-fluid-floor interaction during slips.
    Gupta S; Chanda A
    J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slip resistance of casual footwear: implications for falls in older adults.
    Menz HB; Lord ST; McIntosh AS
    Gerontology; 2001; 47(3):145-9. PubMed ID: 11340320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane.
    Manning DP; Jones C
    Appl Ergon; 2001 Apr; 32(2):185-96. PubMed ID: 11277511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips.
    Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM
    Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.