BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 18482593)

  • 1. Fatty acids as modulators of the cellular production of reactive oxygen species.
    Schönfeld P; Wojtczak L
    Free Radic Biol Med; 2008 Aug; 45(3):231-41. PubMed ID: 18482593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative roles of Ca(2+) -independent phospholipase A2 in respiratory chain-associated ROS production in brain mitochondria: influence of docosahexaenoic acid and bromoenol lactone.
    Nordmann C; Strokin M; Schönfeld P; Reiser G
    J Neurochem; 2014 Oct; 131(2):163-76. PubMed ID: 24923354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial generation of free radicals and hypoxic signaling.
    Poyton RO; Ball KA; Castello PR
    Trends Endocrinol Metab; 2009 Sep; 20(7):332-40. PubMed ID: 19733481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.
    Tahara EB; Navarete FD; Kowaltowski AJ
    Free Radic Biol Med; 2009 May; 46(9):1283-97. PubMed ID: 19245829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of N-acylethanolamines on the respiratory chain and production of reactive oxygen species in heart mitochondria.
    Wasilewski M; Wojtczak L
    FEBS Lett; 2005 Aug; 579(21):4724-8. PubMed ID: 16099457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose.
    Guerra BA; Otton R
    Int Immunopharmacol; 2011 Dec; 11(12):2220-6. PubMed ID: 22008307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria.
    Liu H; Wang T; Huang K
    Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase.
    Musatov A; Robinson NC
    Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia.
    Schönfeld P; Schlüter T; Fischer KD; Reiser G
    J Neurochem; 2011 Jul; 118(1):69-78. PubMed ID: 21517851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mystery of reactive oxygen species derived from cell respiration.
    Nohl H; Gille L; Staniek K
    Acta Biochim Pol; 2004; 51(1):223-9. PubMed ID: 15094844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria.
    Khawaja NR; Carré M; Kovacic H; Estève MA; Braguer D
    Mol Pharmacol; 2008 Oct; 74(4):1072-83. PubMed ID: 18593821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium inhibits the electron transfer chain and induces reactive oxygen species.
    Wang Y; Fang J; Leonard SS; Rao KM
    Free Radic Biol Med; 2004 Jun; 36(11):1434-43. PubMed ID: 15135180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.
    Semenza GL
    Biochem J; 2007 Jul; 405(1):1-9. PubMed ID: 17555402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of mitochondrial alteration and reactive oxygen species generation in Taiwan cobra cardiotoxin-induced apoptotic death of human neuroblastoma SK-N-SH cells.
    Chen KC; Lin SR; Chang LS
    Toxicon; 2008 Aug; 52(2):361-8. PubMed ID: 18619991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.