BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1848271)

  • 1. Activation of the neutrophil NADPH-oxidase by free fatty acids requires the ionized carboxyl group and partitioning into membrane lipid.
    Steinbeck MJ; Robinson JM; Karnovsky MJ
    J Leukoc Biol; 1991 Apr; 49(4):360-8. PubMed ID: 1848271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arachidonate activation of the neutrophil NADPH-oxidase. Synergistic effects of protein phosphatase inhibitors compared with protein kinase activators.
    Steinbeck MJ; Hegg GG; Karnovsky MJ
    J Biol Chem; 1991 Sep; 266(25):16336-42. PubMed ID: 1653230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the O2(.-)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP.
    Ligeti E; Doussiere J; Vignais PV
    Biochemistry; 1988 Jan; 27(1):193-200. PubMed ID: 2831954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsaturated fatty acids and lipoxygenase products regulate phagocytic NADPH oxidase activity by a nondetergent mechanism.
    Corey SJ; Rosoff PM
    J Lab Clin Med; 1991 Oct; 118(4):343-51. PubMed ID: 1940576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane disordering by anesthetic drugs: relationship to synaptosomal sodium and calcium fluxes.
    Harris RA; Bruno P
    J Neurochem; 1985 Apr; 44(4):1274-81. PubMed ID: 2579208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation by saturated and monounsaturated fatty acids of the O2- -generating system in a cell-free preparation from neutrophils.
    Tanaka T; Makino R; Iizuka T; Ishimura Y; Kanegasaki S
    J Biol Chem; 1988 Sep; 263(27):13670-6. PubMed ID: 2843528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Modulation by some fatty acids of protein kinase C-dependent NADPH oxidase in human adherent monocyte: mechanism of action, possible implication in atherogenesis].
    Léger CL; Kadri-Hassani N
    C R Seances Soc Biol Fil; 1995; 189(5):765-79. PubMed ID: 8673625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of O2.- generating oxidase of bovine neutrophils in a cell-free system. Interaction of a cytosolic factor with the plasma membrane and control by G nucleotides.
    Ligeti E; Tardif M; Vignais PV
    Biochemistry; 1989 Aug; 28(17):7116-23. PubMed ID: 2554964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease priming of neutrophil superoxide production. Effects on membrane lipid order and lateral mobility.
    Kusner DJ; Aucott JN; Franceschi D; Sarasua MM; Spagnuolo PJ; King CH
    J Biol Chem; 1991 Sep; 266(25):16465-71. PubMed ID: 1653237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short term exposure to cis unsaturated free fatty acids inhibits degranulation of cytotoxic T lymphocytes.
    Richieri GV; Mescher MF; Kleinfeld AM
    J Immunol; 1990 Jan; 144(2):671-7. PubMed ID: 2295805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-dependent regulation of NADPH oxidase activity in guinea-pig polymorphonuclear leukocytes.
    Miyahara M; Watanabe S; Okimasu E; Utsumi K
    Biochim Biophys Acta; 1987 Jul; 929(3):253-62. PubMed ID: 3038195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of rat neutrophil function in vitro by cis- and trans-MUFA.
    Padovese R; Curi R
    Br J Nutr; 2009 May; 101(9):1351-9. PubMed ID: 18828952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium.
    Yamaguchi T; Kaneda M; Kakinuma K
    Biochim Biophys Acta; 1986 Oct; 861(3):440-6. PubMed ID: 3021216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin.
    Badwey JA; Curnutte JT; Robinson JM; Berde CB; Karnovsky MJ; Karnovsky ML
    J Biol Chem; 1984 Jun; 259(12):7870-7. PubMed ID: 6330088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of NADPH-oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system.
    Maridonneau-Parini I; Tauber AI
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1099-105. PubMed ID: 3019332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty-acid-induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides.
    Seifert R; Schultz G
    Eur J Biochem; 1987 Feb; 162(3):563-9. PubMed ID: 3549290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of distinct activation pathways of the human neutrophil NADPH-oxidase.
    Maridonneau-Parini I; Tringale SM; Tauber AI
    J Immunol; 1986 Nov; 137(9):2925-9. PubMed ID: 3020128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase.
    Clancy RM; Leszczynska-Piziak J; Abramson SB
    J Clin Invest; 1992 Sep; 90(3):1116-21. PubMed ID: 1325992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturated and trans-unsaturated fatty acids elicit high levels of superoxide generation in intact and cell-free preparations of neutrophils.
    Tanaka T; Kanegasaki S; Makino R; Iizuka T; Ishimura Y
    Biochem Biophys Res Commun; 1987 Apr; 144(2):606-12. PubMed ID: 3034258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives.
    Schmid E; Figala V; Ullrich V
    Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.