These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18482906)

  • 1. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law.
    Rand DA
    J R Soc Interface; 2008 Aug; 5 Suppl 1(Suppl 1):S59-69. PubMed ID: 18482906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-kappaB signalling pathway.
    Yue H; Brown M; Knowles J; Wang H; Broomhead DS; Kell DB
    Mol Biosyst; 2006 Dec; 2(12):640-9. PubMed ID: 17216045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and signalling network maps integration: application to cross-talk studies and omics data analysis in cancer.
    Sompairac N; Modamio J; Barillot E; Fleming RMT; Zinovyev A; Kuperstein I
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):140. PubMed ID: 30999838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PeTTSy: a computational tool for perturbation analysis of complex systems biology models.
    Domijan M; Brown PE; Shulgin BV; Rand DA
    BMC Bioinformatics; 2016 Mar; 17():124. PubMed ID: 26964749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.
    Vernon I; Liu J; Goldstein M; Rowe J; Topping J; Lindsey K
    BMC Syst Biol; 2018 Jan; 12(1):1. PubMed ID: 29291750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activating and inhibiting connections in biological network dynamics.
    McDonald D; Waterbury L; Knight R; Betterton MD
    Biol Direct; 2008 Dec; 3():49. PubMed ID: 19055800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness properties of circadian clock architectures.
    Stelling J; Gilles ED; Doyle FJ
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13210-5. PubMed ID: 15340155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global entrainment of transcriptional systems to periodic inputs.
    Russo G; di Bernardo M; Sontag ED
    PLoS Comput Biol; 2010 Apr; 6(4):e1000739. PubMed ID: 20418962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method of ‘speed coefficients’ for biochemical model reduction applied to the NF-κB system.
    West S; Bridge LJ; White MR; Paszek P; Biktashev VN
    J Math Biol; 2015 Feb; 70(3):591-620. PubMed ID: 24658784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.
    Popik OV; Petrovskiy ED; Mishchenko EL; Lavrik IN; Ivanisenko VA
    Virus Res; 2016 Jun; 218():71-8. PubMed ID: 26481968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous optimization approach for inferring parameters in mathematical models of regulatory networks.
    Deng Z; Tian T
    BMC Bioinformatics; 2014 Jul; 15(1):256. PubMed ID: 25070047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating confidence intervals in predicted responses for oscillatory biological models.
    St John PC; Doyle FJ
    BMC Syst Biol; 2013 Jul; 7():71. PubMed ID: 23895261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
    Zhang Q; Bhattacharya S; Andersen ME; Conolly RB
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):253-76. PubMed ID: 20574901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communicating oscillatory networks: frequency domain analysis.
    Ihekwaba AE; Sedwards S
    BMC Syst Biol; 2011 Dec; 5():203. PubMed ID: 22192879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.
    Zhang X; Shao B; Wu Y; Qi O
    PLoS One; 2013; 8(9):e75931. PubMed ID: 24069453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of parameters in systems biology.
    Abdulla UG; Poteau R
    Math Biosci; 2018 Nov; 305():133-145. PubMed ID: 30217694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics.
    Nienałtowski K; Włodarczyk M; Lipniacki T; Komorowski M
    BMC Syst Biol; 2015 Sep; 9():65. PubMed ID: 26415494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.