BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18482986)

  • 1. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism.
    Chu L; Lai Y; Xu X; Eddy S; Yang S; Song L; Kolodrubetz D
    J Biol Chem; 2008 Jul; 283(28):19351-8. PubMed ID: 18482986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Aggregatibacter actinomycetemcomitans in glutathione catabolism.
    Chu L; Xu X; Su J; Song L; Lai Y; Dong Z; Cappelli D
    Oral Microbiol Immunol; 2009 Jun; 24(3):236-42. PubMed ID: 19416454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola.
    Phillips L; Chu L; Kolodrubetz D
    Anaerobe; 2020 Aug; 64():102231. PubMed ID: 32603680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for recombinant gamma-glutamyltransferase from Treponema denticola in glutathione metabolism.
    Chu L; Xu X; Dong Z; Cappelli D; Ebersole JL
    Infect Immun; 2003 Jan; 71(1):335-42. PubMed ID: 12496183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola.
    Lai Y; Chu L
    Appl Environ Microbiol; 2008 Jan; 74(1):73-9. PubMed ID: 17981934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutathione metabolism of Treponema denticola in bacterial growth and virulence expression.
    Chu L; Dong Z; Xu X; Cochran DL; Ebersole JL
    Infect Immun; 2002 Mar; 70(3):1113-20. PubMed ID: 11854190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana: role of the ChaC/GCG family of γ-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase.
    Kumar S; Kaur A; Chattopadhyay B; Bachhawat AK
    Biochem J; 2015 May; 468(1):73-85. PubMed ID: 25716890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione catabolism by Treponema denticola impacts its pathogenic potential.
    Chu L; Wu Y; Xu X; Phillips L; Kolodrubetz D
    Anaerobe; 2020 Apr; 62():102170. PubMed ID: 32044394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New role for leucyl aminopeptidase in glutathione turnover.
    Cappiello M; Lazzarotti A; Buono F; Scaloni A; D'Ambrosio C; Amodeo P; Méndez BL; Pelosi P; Del Corso A; Mura U
    Biochem J; 2004 Feb; 378(Pt 1):35-44. PubMed ID: 14583094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotopological Analysis of the
    Godovikova V; Goetting-Minesky MP; Timm JC; Fenno JC
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30373754
    [No Abstract]   [Full Text] [Related]  

  • 11. gamma-Glutamyltransferase from the outer cell envelope of Treponema denticola ATCC 35405.
    Mäkinen PL; Mäkinen KK
    Infect Immun; 1997 Feb; 65(2):685-91. PubMed ID: 9009331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DmpA-homologous protein from Pseudomonas sp. is a dipeptidase specific for beta-alanyl dipeptides.
    Komeda H; Asano Y
    FEBS J; 2005 Jun; 272(12):3075-84. PubMed ID: 15955066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An engineered folded PLP-bound monomer of Treponema denticola cystalysin reveals the effect of the dimeric structure on the catalytic properties of the enzyme.
    Montioli R; Cellini B; Bertoldi M; Paiardini A; Voltattorni CB
    Proteins; 2009 Feb; 74(2):304-17. PubMed ID: 18618696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola.
    Bamford CV; Francescutti T; Cameron CE; Jenkinson HF; Dymock D
    Mol Oral Microbiol; 2010 Dec; 25(6):369-83. PubMed ID: 21040511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization and structural prediction of a novel cytosolic leucyl aminopeptidase of the M17 family from Schizosaccharomyces pombe.
    Herrera-Camacho I; Rosas-Murrieta NH; Rojo-Domínguez A; Millán L; Reyes-Leyva J; Santos-López G; Suárez-Rendueles P
    FEBS J; 2007 Dec; 274(23):6228-40. PubMed ID: 18028193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis.
    Spyrakis F; Cellini B; Bruno S; Benedetti P; Carosati E; Cruciani G; Micheli F; Felici A; Cozzini P; Kellogg GE; Voltattorni CB; Mozzarelli A
    ChemMedChem; 2014 Jul; 9(7):1501-11. PubMed ID: 24616267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato activity on dipeptide and tripeptide substrates.
    Gu YQ; Walling LL
    Eur J Biochem; 2000 Feb; 267(4):1178-87. PubMed ID: 10672029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cytosolic leucyl aminopeptidase (EC 3.4.11.1) as the major cysteinylglycine-hydrolysing activity in rat liver.
    Jösch C; Klotz LO; Sies H
    Biol Chem; 2003 Feb; 384(2):213-8. PubMed ID: 12675513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression of hemolysin genes from Treponema denticola strains ATCC 35404 (TD-4) and human clinical isolate GM-1 in Escherichia coli.
    Karunakaran T; Holt SC
    Microb Pathog; 1994 May; 16(5):337-48. PubMed ID: 7815917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystalysin, a 46-kDa L-cysteine desulfhydrase from Treponema denticola: biochemical and biophysical characterization.
    Chu L; Ebersole JL; Kurzban GP; Holt SC
    Clin Infect Dis; 1999 Mar; 28(3):442-50. PubMed ID: 10194060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.