BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18484351)

  • 1. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides.
    Tarhoni MH; Lister T; Ray DE; Carter WG
    Biomarkers; 2008 Jun; 13(4):343-63. PubMed ID: 18484351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection, quantification, and microlocalisation of targets of pesticides using microchannel plate autoradiographic imagers.
    Tarhoni MH; Vigneswara V; Smith M; Anderson S; Wigmore P; Lees JE; Ray DE; Carter WG
    Molecules; 2011 Oct; 16(10):8535-51. PubMed ID: 21989313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical approaches to investigate protein-pesticide adducts.
    Carter WG; Tarhoni MH; Ray DE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(17-18):1312-9. PubMed ID: 19879817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro kinetic interactions of DEET, pyridostigmine and organophosphorus pesticides with human cholinesterases.
    Wille T; Thiermann H; Worek F
    Chem Biol Interact; 2011 Apr; 190(2-3):79-83. PubMed ID: 21354413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridostigmine bromide protection against acetylcholinesterase inhibition by pesticides.
    Henderson JD; Glucksman G; Leong B; Tigyi A; Ankirskaia A; Siddique I; Lam H; DePeters E; Wilson BW
    J Biochem Mol Toxicol; 2012 Jan; 26(1):31-4. PubMed ID: 21972196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.
    Gearhart JM; Jepson GW; Clewell HJ; Andersen ME; Conolly RB
    Toxicol Appl Pharmacol; 1990 Nov; 106(2):295-310. PubMed ID: 2256118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-dependent binding of chlorpyrifos oxon to acetylcholinesterase.
    Sultatos LG
    Toxicol Sci; 2007 Nov; 100(1):128-35. PubMed ID: 17702992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of acetylcholinesterase activity in Clarias gariepinus as a biomarker of organophosphate and carbamate exposure.
    Mdegela RH; Mosha RD; Sandvik M; Skaare JU
    Ecotoxicology; 2010 Jun; 19(5):855-63. PubMed ID: 20169407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five tyrosines and two serines in human albumin are labeled by the organophosphorus agent FP-biotin.
    Ding SJ; Carr J; Carlson JE; Tong L; Xue W; Li Y; Schopfer LM; Li B; Nachon F; Asojo O; Thompson CM; Hinrichs SH; Masson P; Lockridge O
    Chem Res Toxicol; 2008 Sep; 21(9):1787-94. PubMed ID: 18707141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential protein adduction by seven organophosphorus pesticides in both brain and thymus.
    Carter WG; Tarhoni M; Rathbone AJ; Ray DE
    Hum Exp Toxicol; 2007 Apr; 26(4):347-53. PubMed ID: 17615116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon, and diazinon.
    Jameson RR; Seidler FJ; Slotkin TA
    Environ Health Perspect; 2007 Jan; 115(1):65-70. PubMed ID: 17366821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives.
    Fujioka K; Casida JE
    Chem Res Toxicol; 2007 Aug; 20(8):1211-7. PubMed ID: 17645302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii.
    Sparling DW; Fellers G
    Environ Pollut; 2007 Jun; 147(3):535-9. PubMed ID: 17218044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community.
    Huen K; Bradman A; Harley K; Yousefi P; Boyd Barr D; Eskenazi B; Holland N
    Environ Res; 2012 Aug; 117():8-16. PubMed ID: 22683313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.
    Hagstrom D; Hirokawa H; Zhang L; Radic Z; Taylor P; Collins ES
    Arch Toxicol; 2017 Aug; 91(8):2837-2847. PubMed ID: 27990564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of chlorpyrifos-oxon and paraoxon acetylcholinesterase inhibition dynamics: potential role of a peripheral binding site.
    Kousba AA; Sultatos LG; Poet TS; Timchalk C
    Toxicol Sci; 2004 Aug; 80(2):239-48. PubMed ID: 15141101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry.
    Peeples ES; Schopfer LM; Duysen EG; Spaulding R; Voelker T; Thompson CM; Lockridge O
    Toxicol Sci; 2005 Feb; 83(2):303-12. PubMed ID: 15525694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism-Coupled Cell-Independent Acetylcholinesterase Activity Assay for Evaluation of the Effects of Chlorination on Diazinon Toxicity.
    Matsushita T; Kikkawa Y; Omori K; Matsui Y; Shirasaki N
    Chem Res Toxicol; 2021 Sep; 34(9):2070-2078. PubMed ID: 34374289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodegradation of organophosphorus insecticides - investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay.
    Bavcon Kralj M; Franko M; Trebse P
    Chemosphere; 2007 Feb; 67(1):99-107. PubMed ID: 17097717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related brain cholinesterase inhibition kinetics following in vitro incubation with chlorpyrifos-oxon and diazinon-oxon.
    Kousba AA; Poet TS; Timchalk C
    Toxicol Sci; 2007 Jan; 95(1):147-55. PubMed ID: 17018647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.