These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 18484640)
1. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. Li J; Lei B; Liu H; Li S; Yao X; Liu M; Gramatica P J Comput Chem; 2008 Dec; 29(16):2636-47. PubMed ID: 18484640 [TBL] [Abstract][Full Text] [Related]
2. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4. Lei B; Xi L; Li J; Liu H; Yao X Anal Chim Acta; 2009 Jun; 644(1-2):17-24. PubMed ID: 19463556 [TBL] [Abstract][Full Text] [Related]
3. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study. Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843 [TBL] [Abstract][Full Text] [Related]
4. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. Gramatica P; Giani E; Papa E J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002 [TBL] [Abstract][Full Text] [Related]
5. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR. Goudarzi N; Goodarzi M; Araujo MC; Galvão RK J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589 [TBL] [Abstract][Full Text] [Related]
6. 3D-QSAR studies on malonyl coenzyme A decarboxylase inhibitors. Patel MR; Talele TT Bioorg Med Chem; 2007 Jul; 15(13):4470-81. PubMed ID: 17482825 [TBL] [Abstract][Full Text] [Related]
7. Application of ab initio theory to QSAR study of 1,4-dihydropyridine-based calcium channel blockers using GA-MLR and PC-GA-ANN procedures. Hemmateenejad B; Safarpour MA; Miri R; Taghavi F J Comput Chem; 2004 Sep; 25(12):1495-503. PubMed ID: 15224393 [TBL] [Abstract][Full Text] [Related]
8. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities. Goodarzi M; Freitas MP; Jensen R J Chem Inf Model; 2009 Apr; 49(4):824-32. PubMed ID: 19338295 [TBL] [Abstract][Full Text] [Related]
9. QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives. Fernández M; Caballero J Bioorg Med Chem; 2007 Sep; 15(18):6298-310. PubMed ID: 17590339 [TBL] [Abstract][Full Text] [Related]
10. Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. Fernández M; Caballero J J Mol Graph Model; 2006 Dec; 25(4):410-22. PubMed ID: 16574448 [TBL] [Abstract][Full Text] [Related]
11. Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging. Fernández M; Fernández L; Caballero J; Abreu JI; Reyes G Chem Biol Drug Des; 2008 Jul; 72(1):65-78. PubMed ID: 18554254 [TBL] [Abstract][Full Text] [Related]
12. Validated quantitative structure-activity relationship analysis of a series of 2-aminothiazole based p56(Lck) inhibitors. Li J; Du J; Xi L; Liu H; Yao X; Liu M Anal Chim Acta; 2009 Jan; 631(1):29-39. PubMed ID: 19046675 [TBL] [Abstract][Full Text] [Related]
13. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Fatemi MH; Gharaghani S Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538 [TBL] [Abstract][Full Text] [Related]
14. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm. Jalali-Heravi M; Asadollahi-Baboli M; Shahbazikhah P Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800 [TBL] [Abstract][Full Text] [Related]
15. Modeling of p38 mitogen-activated protein kinase inhibitors using the Catalyst HypoGen and k-nearest neighbor QSAR methods. Xiao Z; Varma S; Xiao YD; Tropsha A J Mol Graph Model; 2004 Oct; 23(2):129-38. PubMed ID: 15363455 [TBL] [Abstract][Full Text] [Related]
16. Generation of QSAR sets with a self-organizing map. Guha R; Serra JR; Jurs PC J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049 [TBL] [Abstract][Full Text] [Related]
17. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media. Ghasemi JB; Abdolmaleki A; Mandoumi N J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399 [TBL] [Abstract][Full Text] [Related]
18. Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors. Fernández M; Caballero J; Tundidor-Camba A Bioorg Med Chem; 2006 Jun; 14(12):4137-50. PubMed ID: 16504515 [TBL] [Abstract][Full Text] [Related]
19. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives. Mandal AS; Roy K Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864 [TBL] [Abstract][Full Text] [Related]
20. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]