BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 18484753)

  • 1. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality.
    Iversen L; Cherouati N; Berthing T; Stamou D; Martinez KL
    Langmuir; 2008 Jun; 24(12):6375-81. PubMed ID: 18484753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction.
    Wu SC; Ng KK; Wong SL
    Proteins; 2009 Nov; 77(2):404-12. PubMed ID: 19425108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase.
    Kampmeier F; Ribbert M; Nachreiner T; Dembski S; Beaufils F; Brecht A; Barth S
    Bioconjug Chem; 2009 May; 20(5):1010-5. PubMed ID: 19388673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution structure of streptavidin in complex with a novel high affinity peptide tag mimicking the biotin binding motif.
    Perbandt M; Bruns O; Vallazza M; Lamla T; Betzel Ch; Erdmann VA
    Proteins; 2007 Jun; 67(4):1147-53. PubMed ID: 17377987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.
    Yamasaki R; Ito M; Lee B; Jung H; Lee H; Kawai T
    Anal Chim Acta; 2007 Nov; 603(1):76-81. PubMed ID: 17950060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immobilization of proteins on biodegradable fibers via biotin-streptavidin bridges.
    Lu T; Chen X; Shi Q; Wang Y; Zhang P; Jing X
    Acta Biomater; 2008 Nov; 4(6):1770-7. PubMed ID: 18562258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed supramolecular surface assembly of SNAP-tag fusion proteins.
    Uhlenheuer DA; Wasserberg D; Haase C; Nguyen HD; Schenkel JH; Huskens J; Ravoo BJ; Jonkheijm P; Brunsveld L
    Chemistry; 2012 May; 18(22):6788-94. PubMed ID: 22511333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies.
    Kasry A; Borri P; Davies PR; Harwood A; Thomas N; Lofas S; Dale T
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1793-8. PubMed ID: 20355796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X; Wu YJ; Robelek R; Knoll W
    Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an enzymatic method for site-specific incorporation of desthiobiotin to recombinant proteins in vitro.
    Wu SC; Wong SL
    Anal Biochem; 2004 Aug; 331(2):340-8. PubMed ID: 15265740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized streptavidin gradients as bioconjugation platforms.
    Coad BR; Vasilev K; Diener KR; Hayball JD; Short RD; Griesser HJ
    Langmuir; 2012 Feb; 28(5):2710-7. PubMed ID: 22235975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicron streptavidin patterns for protein assembly.
    Christman KL; Requa MV; Enriquez-Rios VD; Ward SC; Bradley KA; Turner KL; Maynard HD
    Langmuir; 2006 Aug; 22(17):7444-50. PubMed ID: 16893251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general method for the spatially defined immobilization of biomolecules on glass surfaces using "caged" biotin.
    Pirrung MC; Huang CY
    Bioconjug Chem; 1996; 7(3):317-21. PubMed ID: 8816954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and robust approach to immobilization of antibody fragments.
    Ikonomova SP; He Z; Karlsson AJ
    J Immunol Methods; 2016 Aug; 435():7-16. PubMed ID: 27142477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy.
    Jiang X; Zuber A; Heberle J; Ataka K
    Phys Chem Chem Phys; 2008 Nov; 10(42):6381-7. PubMed ID: 18972026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of bionanostructures onto beta-cyclodextrin molecular printboards for antibody recognition and lymphocyte cell counting.
    Ludden MJ; Li X; Greve J; van Amerongen A; Escalante M; Subramaniam V; Reinhoudt DN; Huskens J
    J Am Chem Soc; 2008 Jun; 130(22):6964-73. PubMed ID: 18461928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.