These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18484763)

  • 1. Intrinsic structural disorder of DF31, a Drosophila protein of chromatin decondensation and remodeling activities.
    Szollosi E; Bokor M; Bodor A; Perczel A; Klement E; Medzihradszky KF; Tompa K; Tompa P
    J Proteome Res; 2008 Jun; 7(6):2291-9. PubMed ID: 18484763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila Df31 protein interacts with histone H3 tails and promotes chromatin bridging in vitro.
    Guillebault D; Cotterill S
    J Mol Biol; 2007 Nov; 373(4):903-12. PubMed ID: 17889901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of induced folding in molecular recognition by intrinsically disordered proteins.
    Hazy E; Tompa P
    Chemphyschem; 2009 Jul; 10(9-10):1415-9. PubMed ID: 19462392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic studies of the intrinsically unstructured mammalian proteome.
    Galea CA; Pagala VR; Obenauer JC; Park CG; Slaughter CA; Kriwacki RW
    J Proteome Res; 2006 Oct; 5(10):2839-48. PubMed ID: 17022655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1.
    Balázs A; Csizmok V; Buday L; Rakács M; Kiss R; Bokor M; Udupa R; Tompa K; Tompa P
    FEBS J; 2009 Jul; 276(14):3744-56. PubMed ID: 19523119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing protein disorder and induced folding.
    Receveur-Bréchot V; Bourhis JM; Uversky VN; Canard B; Longhi S
    Proteins; 2006 Jan; 62(1):24-45. PubMed ID: 16287116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded.
    Zeev-Ben-Mordehai T; Rydberg EH; Solomon A; Toker L; Auld VJ; Silman I; Botti S; Sussman JL
    Proteins; 2003 Nov; 53(3):758-67. PubMed ID: 14579366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome.
    Kim KH; Moon MH
    J Proteome Res; 2009 Sep; 8(9):4272-8. PubMed ID: 19653698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome.
    Skupien-Rabian B; Jankowska U; Swiderska B; Lukasiewicz S; Ryszawy D; Dziedzicka-Wasylewska M; Kedracka-Krok S
    J Proteomics; 2016 Jan; 130():76-84. PubMed ID: 26376097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of Drosophila protein complexes for mass spectrometry.
    Jüschke C; Knoblich JA
    Methods Mol Biol; 2008; 420():347-58. PubMed ID: 18641959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and analysis of plant and plastid proteomes by 2DE.
    Zychlinski Av; Gruissem W
    Methods Mol Biol; 2009; 519():205-20. PubMed ID: 19381585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Df31 is a novel nuclear protein involved in chromatin structure in Drosophila melanogaster.
    Crevel G; Huikeshoven H; Cotterill S
    J Cell Sci; 2001 Jan; 114(Pt 1):37-47. PubMed ID: 11112688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions.
    Sutherland BW; Toews J; Kast J
    J Mass Spectrom; 2008 Jun; 43(6):699-715. PubMed ID: 18438963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.
    Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R
    J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generally detected proteins in comparative proteomics--a matter of cellular stress response?
    Wang P; Bouwman FG; Mariman EC
    Proteomics; 2009 Jun; 9(11):2955-66. PubMed ID: 19415655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting intrinsic disorder in proteins: an overview.
    He B; Wang K; Liu Y; Xue B; Uversky VN; Dunker AK
    Cell Res; 2009 Aug; 19(8):929-49. PubMed ID: 19597536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies.
    Ahmed FE
    Expert Rev Proteomics; 2008 Jun; 5(3):469-96. PubMed ID: 18532914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK.
    Kim DW; Chae JI; Kim JY; Pak JH; Koo DB; Bahk YY; Seo SB
    J Cell Biochem; 2009 Apr; 106(6):1048-59. PubMed ID: 19229864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bulkiness and hydrophobicity of an aliphatic amino acid in the recognition helix of the GAGA zinc finger on the stability of the hydrophobic core and DNA binding affinity.
    Dhanasekaran M; Negi S; Imanishi M; Suzuki M; Sugiura Y
    Biochemistry; 2008 Nov; 47(45):11717-24. PubMed ID: 18855425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural proteomics by NMR spectroscopy.
    Shin J; Lee W; Lee W
    Expert Rev Proteomics; 2008 Aug; 5(4):589-601. PubMed ID: 18761469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.