BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18484910)

  • 1. Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation.
    Xu X; Zhao X; Liu TC; Pan H
    Photomed Laser Surg; 2008 Jun; 26(3):197-202. PubMed ID: 18484910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats.
    Lopes-Martins RA; Marcos RL; Leonardo PS; Prianti AC; Muscará MN; Aimbire F; Frigo L; Iversen VV; Bjordal JM
    J Appl Physiol (1985); 2006 Jul; 101(1):283-8. PubMed ID: 16627677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [AMPK regulates mitochondrial oxidative stress in C2C12 myotubes induced by electrical stimulations of different intensities].
    Dong HL; Wu HY; Tang Y; Huang YW; Lin RZ; Zhao J; Xu XY
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Jun; 38(6):742-747. PubMed ID: 29997099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria fine-tune the slow Ca(2+) transients induced by electrical stimulation of skeletal myotubes.
    Eisner V; Parra V; Lavandero S; Hidalgo C; Jaimovich E
    Cell Calcium; 2010 Dec; 48(6):358-70. PubMed ID: 21106237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of moderate electrical stimulation on reactive species production by primary rat skeletal muscle cells: cross talk between superoxide and nitric oxide production.
    Lambertucci RH; Silveira Ldos R; Hirabara SM; Curi R; Sweeney G; Pithon-Curi TC
    J Cell Physiol; 2012 Jun; 227(6):2511-8. PubMed ID: 21898396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical pulse stimulation decreases electrochemical Na
    Danilov K; Sidorenko S; Milovanova K; Klimanova E; Kapilevich LV; Orlov SN
    Biochem Biophys Res Commun; 2017 Nov; 493(2):875-878. PubMed ID: 28958945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C
    Tamura Y; Kouzaki K; Kotani T; Nakazato K
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1029-C1044. PubMed ID: 32936700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner.
    de Almeida P; Lopes-Martins RÁ; Tomazoni SS; Silva JA; de Carvalho Pde T; Bjordal JM; Leal Junior EC
    Photochem Photobiol; 2011; 87(5):1159-63. PubMed ID: 21749398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical pulse stimulation-induced tetanic exercise simulation increases the secretion of extracellular vesicles from C2C12 myotubes.
    Murata A; Akiyama H; Honda H; Shimizu K
    Biochem Biophys Res Commun; 2023 Sep; 672():177-184. PubMed ID: 37354611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.
    Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K
    Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNFalpha-induced cytoprotection requires the production of free radicals within mitochondria in C2C12 myotubes.
    Lacerda L; Smith RM; Opie L; Lecour S
    Life Sci; 2006 Nov; 79(23):2194-201. PubMed ID: 16938314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects.
    Evers-van Gogh IJ; Alex S; Stienstra R; Brenkman AB; Kersten S; Kalkhoven E
    Sci Rep; 2015 Jun; 5():10944. PubMed ID: 26091097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation.
    Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D
    Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of myogenic reactive oxygen species and interleukin-6 in contracting skeletal muscle cells.
    Pan H; Xu X; Hao X; Chen Y
    Oxid Med Cell Longev; 2012; 2012():145418. PubMed ID: 22666517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation of microengineered skeletal muscle tissue: Effect of stimulus parameters on myotube contractility and maturation.
    Banan Sadeghian R; Ebrahimi M; Salehi S
    J Tissue Eng Regen Med; 2018 Apr; 12(4):912-922. PubMed ID: 28622706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable bio-microactuator powered by muscle cells.
    Akiyama Y; Furukawa Y; Morishima K
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6565-8. PubMed ID: 17959454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.