BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 18485226)

  • 1. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
    Polavarapu N; Mariño-Ramírez L; Landsman D; McDonald JF; Jordan IK
    BMC Genomics; 2008 May; 9():226. PubMed ID: 18485226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of transcription factor binding sites derived from transposable element sequences using ChIP-seq.
    Conley AB; Jordan IK
    Methods Mol Biol; 2010; 674():225-40. PubMed ID: 20827595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A c-Myc regulatory subnetwork from human transposable element sequences.
    Wang J; Bowen NJ; Mariño-Ramírez L; Jordan IK
    Mol Biosyst; 2009 Dec; 5(12):1831-9. PubMed ID: 19763338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transcription factor binding sites in the human genome sequence.
    Levy S; Hannenhalli S
    Mamm Genome; 2002 Sep; 13(9):510-4. PubMed ID: 12370781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating evolution of transcription factor binding sites into annotated alignments.
    Bais AS; Grossmann S; Vingron M
    J Biosci; 2007 Aug; 32(5):841-50. PubMed ID: 17914226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the mammalian transcription factor binding repertoire via transposable elements.
    Bourque G; Leong B; Vega VB; Chen X; Lee YL; Srinivasan KG; Chew JL; Ruan Y; Wei CL; Ng HH; Liu ET
    Genome Res; 2008 Nov; 18(11):1752-62. PubMed ID: 18682548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and evolution of human microRNAs from transposable elements.
    Piriyapongsa J; Mariño-Ramírez L; Jordan IK
    Genetics; 2007 Jun; 176(2):1323-37. PubMed ID: 17435244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex.
    Guffanti G; Bartlett A; Klengel T; Klengel C; Hunter R; Glinsky G; Macciardi F
    Mol Biol Evol; 2018 Oct; 35(10):2435-2453. PubMed ID: 30053206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the protein coding potential of exonized transposable element sequences.
    Piriyapongsa J; Rutledge MT; Patel S; Borodovsky M; Jordan IK
    Biol Direct; 2007 Nov; 2():31. PubMed ID: 18036258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent and dynamic transposable elements contribute to genomic divergence under asexuality.
    Ferreira de Carvalho J; de Jager V; van Gurp TP; Wagemaker NC; Verhoeven KJ
    BMC Genomics; 2016 Nov; 17(1):884. PubMed ID: 27821059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative analysis of relative occurrence of transcription factor binding sites in vertebrate genomes and gene promoter areas.
    Stepanova M; Tiazhelova T; Skoblov M; Baranova A
    Bioinformatics; 2005 May; 21(9):1789-96. PubMed ID: 15699025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional microRNAs and target sites are created by lineage-specific transposition.
    Spengler RM; Oakley CK; Davidson BL
    Hum Mol Genet; 2014 Apr; 23(7):1783-93. PubMed ID: 24234653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of a substantial fraction of human regulatory sequences from transposable elements.
    Jordan IK; Rogozin IB; Glazko GV; Koonin EV
    Trends Genet; 2003 Feb; 19(2):68-72. PubMed ID: 12547512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.
    Sveinsson S; Gill N; Kane NC; Cronk Q
    BMC Genomics; 2013 Jul; 14():502. PubMed ID: 23883295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive DNA elements, nucleosome binding and human gene expression.
    Huda A; Mariño-Ramírez L; Landsman D; Jordan IK
    Gene; 2009 May; 436(1-2):12-22. PubMed ID: 19393174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors.
    Testori A; Caizzi L; Cutrupi S; Friard O; De Bortoli M; Cora' D; Caselle M
    BMC Genomics; 2012 Aug; 13():400. PubMed ID: 22897927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread occurrence of power-law distributions in inter-repeat distances shaped by genome dynamics.
    Klimopoulos A; Sellis D; Almirantis Y
    Gene; 2012 May; 499(1):88-98. PubMed ID: 22370293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.