BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18485368)

  • 1. Phenytoin protects central axons in experimental autoimmune encephalomyelitis.
    Black JA; Waxman SG
    J Neurol Sci; 2008 Nov; 274(1-2):57-63. PubMed ID: 18485368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE.
    Black JA; Liu S; Hains BC; Saab CY; Waxman SG
    Brain; 2006 Dec; 129(Pt 12):3196-208. PubMed ID: 16931536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine.
    Black JA; Liu S; Carrithers M; Carrithers LM; Waxman SG
    Ann Neurol; 2007 Jul; 62(1):21-33. PubMed ID: 17654737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS.
    Craner MJ; Damarjian TG; Liu S; Hains BC; Lo AC; Black JA; Newcombe J; Cuzner ML; Waxman SG
    Glia; 2005 Jan; 49(2):220-9. PubMed ID: 15390090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo.
    Lo AC; Saab CY; Black JA; Waxman SG
    J Neurophysiol; 2003 Nov; 90(5):3566-71. PubMed ID: 12904334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tapered withdrawal of phenytoin removes protective effect in EAE without inflammatory rebound and mortality.
    Liu S; Zwinger P; Black JA; Waxman SG
    J Neurol Sci; 2014 Jun; 341(1-2):8-12. PubMed ID: 24690348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis.
    Brand-Schieber E; Werner P
    Exp Neurol; 2004 Sep; 189(1):5-9. PubMed ID: 15296830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis.
    Herrero-Herranz E; Pardo LA; Gold R; Linker RA
    Neurobiol Dis; 2008 May; 30(2):162-73. PubMed ID: 18342527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis.
    Garay L; Gonzalez Deniselle MC; Gierman L; Meyer M; Lima A; Roig P; De Nicola AF
    Neuroimmunomodulation; 2008; 15(1):76-83. PubMed ID: 18667803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis.
    Lo AC; Black JA; Waxman SG
    Neuroreport; 2002 Oct; 13(15):1909-12. PubMed ID: 12395089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis.
    Wang D; Ayers MM; Catmull DV; Hazelwood LJ; Bernard CC; Orian JM
    Glia; 2005 Aug; 51(3):235-40. PubMed ID: 15812814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein.
    Irony-Tur-Sinai M; Grigoriadis N; Lourbopoulos A; Pinto-Maaravi F; Abramsky O; Brenner T
    Exp Neurol; 2006 Mar; 198(1):136-44. PubMed ID: 16423348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis.
    Gresle MM; Shaw G; Jarrott B; Alexandrou EN; Friedhuber A; Kilpatrick TJ; Butzkueven H
    J Neurosci Res; 2008 Dec; 86(16):3548-55. PubMed ID: 18709652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenytoin at optimum doses ameliorates experimental autoimmune encephalomyelitis via modulation of immunoregulatory cells.
    Hashiba N; Nagayama S; Araya SI; Inada H; Sonobe Y; Suzumura A; Matsui M
    J Neuroimmunol; 2011 Apr; 233(1-2):112-9. PubMed ID: 21237519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis.
    Gold BG; Voda J; Yu X; McKeon G; Bourdette DN
    J Neurosci Res; 2004 Aug; 77(3):367-77. PubMed ID: 15248293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE).
    Olechowski CJ; Truong JJ; Kerr BJ
    Pain; 2009 Jan; 141(1-2):156-64. PubMed ID: 19084337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis.
    Stevens M; Timmermans S; Bottelbergs A; Hendriks JJ; BrĂ´ne B; Baes M; Tytgat J
    J Neuroimmunol; 2013 Aug; 261(1-2):21-8. PubMed ID: 23735284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VEGF and angiogenesis in acute and chronic MOG((35-55)) peptide induced EAE.
    Roscoe WA; Welsh ME; Carter DE; Karlik SJ
    J Neuroimmunol; 2009 Apr; 209(1-2):6-15. PubMed ID: 19233483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophages and neurodegeneration.
    Hendriks JJ; Teunissen CE; de Vries HE; Dijkstra CD
    Brain Res Brain Res Rev; 2005 Apr; 48(2):185-95. PubMed ID: 15850657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathological findings in rats with experimental allergic encephalomyelitis.
    Dong M; Liu R; Guo L; Li C; Tan G
    APMIS; 2008 Nov; 116(11):972-84. PubMed ID: 19132994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.