These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18485374)

  • 21. Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model.
    Torabi S; Lowengrub J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041603. PubMed ID: 22680484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth.
    Nikmaneshi MR; Firoozabadi B; Mozafari A; Munn LL
    Sci Rep; 2020 Feb; 10(1):3025. PubMed ID: 32080250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D multi-cell simulation of tumor growth and angiogenesis.
    Shirinifard A; Gens JS; Zaitlen BL; Popławski NJ; Swat M; Glazier JA
    PLoS One; 2009 Oct; 4(10):e7190. PubMed ID: 19834621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation.
    Tang L; van de Ven AL; Guo D; Andasari V; Cristini V; Li KC; Zhou X
    PLoS One; 2014; 9(1):e83962. PubMed ID: 24404145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study.
    Antonopoulos M; Dionysiou D; Stamatakos G; Uzunoglu N
    BMC Bioinformatics; 2019 Aug; 20(1):442. PubMed ID: 31455206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of 3D tumor cell growth using nonlinear finite element method.
    Dong S; Yan Y; Tang L; Meng J; Jiang Y
    Comput Methods Biomech Biomed Engin; 2016; 19(8):807-18. PubMed ID: 26213205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convected element method for simulation of angiogenesis.
    Pindera MZ; Ding H; Chen Z
    J Math Biol; 2008 Oct; 57(4):467-95. PubMed ID: 18365201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis.
    Bauer AL; Jackson TL; Jiang Y
    Biophys J; 2007 May; 92(9):3105-21. PubMed ID: 17277180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.
    Lyu J; Cao J; Zhang P; Liu Y; Cheng H
    PLoS One; 2016; 11(10):e0163173. PubMed ID: 27701426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational approaches to solving equations arising from wound healing.
    Thackham JA; McElwain DL; Turner IW
    Bull Math Biol; 2009 Jan; 71(1):211-46. PubMed ID: 19082664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy.
    Zheng X; Sweidan M
    J Math Biol; 2018 Nov; 77(5):1589-1622. PubMed ID: 30019238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulation of glioma growth and morphology.
    Frieboes HB; Lowengrub JS; Wise S; Zheng X; Macklin P; Bearer EL; Cristini V
    Neuroimage; 2007; 37 Suppl 1(Suppl 1):S59-70. PubMed ID: 17475515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect.
    Subramanian S; Gholami A; Biros G
    J Math Biol; 2019 Aug; 79(3):941-967. PubMed ID: 31127329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multiphase model describing vascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    Bull Math Biol; 2003 Jul; 65(4):609-40. PubMed ID: 12875336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Front instabilities and invasiveness of simulated avascular tumors.
    Popławski NJ; Agero U; Gens JS; Swat M; Glazier JA; Anderson AR
    Bull Math Biol; 2009 Jul; 71(5):1189-227. PubMed ID: 19234746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth.
    Lecca P; Morpurgo D
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S14. PubMed ID: 23095709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation.
    Ham S; Li Y; Jeong D; Lee C; Kwak S; Hwang Y; Kim J
    J Nonlinear Sci; 2022; 32(6):80. PubMed ID: 36089998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational analysis of tumor angiogenesis patterns using a two-dimensional model.
    Shim EB; Kwon YG; Ko HJ
    Yonsei Med J; 2005 Apr; 46(2):275-83. PubMed ID: 15861502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formulation and numerical simulations of a continuum model of avascular tumor growth.
    Mahmood MS; Mahmood S; Dobrota D
    Math Biosci; 2011 Jun; 231(2):159-71. PubMed ID: 21396381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.