These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18485471)

  • 1. Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry.
    Leung BK; Biran R; Underwood CJ; Tresco PA
    Biomaterials; 2008 Aug; 29(23):3289-97. PubMed ID: 18485471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays.
    Skousen JL; Merriam SM; Srivannavit O; Perlin G; Wise KD; Tresco PA
    Prog Brain Res; 2011; 194():167-80. PubMed ID: 21867802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry.
    Brodbeck WG; Voskerician G; Ziats NP; Nakayama Y; Matsuda T; Anderson JM
    J Biomed Mater Res A; 2003 Feb; 64(2):320-9. PubMed ID: 12522819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale neuro-integrative coatings for neural implants.
    He W; Bellamkonda RV
    Biomaterials; 2005 Jun; 26(16):2983-90. PubMed ID: 15603793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release of anti-inflammatory agent alpha-MSH from neural implants.
    Zhong Y; Bellamkonda RV
    J Control Release; 2005 Sep; 106(3):309-18. PubMed ID: 15978692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation.
    Dello Russo C; Lisi L; Tringali G; Navarra P
    Biochem Pharmacol; 2009 Nov; 78(9):1242-51. PubMed ID: 19576187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing electrode-host interfaces: a tissue engineering approach.
    Zhong Y; Yu X; Gilbert R; Bellamkonda RV
    J Rehabil Res Dev; 2001; 38(6):627-32. PubMed ID: 11767970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures.
    Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG
    J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex.
    Griffith RW; Humphrey DR
    Neurosci Lett; 2006 Oct; 406(1-2):81-6. PubMed ID: 16905255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro multi-parametric approach to measuring the effect of implant surface characteristics on cell behaviour.
    Davies JT; Lam J; Tomlins PE; Marshall D
    Biomed Mater; 2010 Feb; 5(1):15002. PubMed ID: 20057015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microglial precursors derived from mouse embryonic stem cells.
    Napoli I; Kierdorf K; Neumann H
    Glia; 2009 Nov; 57(15):1660-71. PubMed ID: 19455585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatine-embedded electrodes--a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes.
    Lind G; Linsmeier CE; Thelin J; Schouenborg J
    J Neural Eng; 2010 Aug; 7(4):046005. PubMed ID: 20551508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulus-dependent macrophage adhesion and behavior.
    Irwin EF; Saha K; Rosenbluth M; Gamble LJ; Castner DG; Healy KE
    J Biomater Sci Polym Ed; 2008; 19(10):1363-82. PubMed ID: 18854128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.
    Eles JR; Vazquez AL; Snyder NR; Lagenaur C; Murphy MC; Kozai TD; Cui XT
    Biomaterials; 2017 Jan; 113():279-292. PubMed ID: 27837661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of brain tissue to chronically implanted neural electrodes.
    Polikov VS; Tresco PA; Reichert WM
    J Neurosci Methods; 2005 Oct; 148(1):1-18. PubMed ID: 16198003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.