These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18485803)

  • 1. Differences in the frequency of micronucleated erythrocytes in humans in relation to consumption of fried carbohydrate-rich food.
    Abramsson-Zetterberg L; Vikström AC; Törnqvist M; Hellenäs KE
    Mutat Res; 2008 May; 653(1-2):50-6. PubMed ID: 18485803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly heated carbohydrate-rich food is an overlooked problem in cancer risk evaluation.
    Abramsson-Zetterberg L
    Food Chem Toxicol; 2018 Nov; 121():151-155. PubMed ID: 30142361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of low-temperature long-time pre-treatment of wheat on acrylamide concentration in short dough biscuits.
    Anese M; Quarta B; Foschia M; Bortolomeazzi R
    Mol Nutr Food Res; 2009 Dec; 53(12):1526-31. PubMed ID: 19785002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased micronucleus frequency in rat bone marrow after acrylamide treatment.
    Yener Y; Dikmenli M
    Food Chem Toxicol; 2009 Aug; 47(8):2120-3. PubMed ID: 19500643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment of dietary acrylamide intake in Flemish adolescents.
    Matthys C; Bilau M; Govaert Y; Moons E; De Henauw S; Willems JL
    Food Chem Toxicol; 2005 Feb; 43(2):271-8. PubMed ID: 15621340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urinary metabolites as biomarkers of acrylamide exposure in mice following dietary crisp bread administration or subcutaneous injection.
    Bjellaas T; Ølstørn HB; Becher G; Alexander J; Knutsen SH; Paulsen JE
    Toxicol Sci; 2007 Dec; 100(2):374-80. PubMed ID: 17823452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender.
    Hagmar L; Wirfält E; Paulsson B; Törnqvist M
    Mutat Res; 2005 Feb; 580(1-2):157-65. PubMed ID: 15668117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations of dietary exposure to acrylamide.
    Boon PE; de Mul A; van der Voet H; van Donkersgoed G; Brette M; van Klaveren JD
    Mutat Res; 2005 Feb; 580(1-2):143-55. PubMed ID: 15668116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of acrylamide from glucans and asparagine.
    Tsutsumiuchi K; Watanabe Y; Watanabe M; Hibino M; Kambe M; Okajima N; Negishi H; Miwa J; Taniguchi H
    N Biotechnol; 2011 Oct; 28(6):566-73. PubMed ID: 21252006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of methods for the reduction of dietary content and toxicity of acrylamide.
    Friedman M; Levin CE
    J Agric Food Chem; 2008 Aug; 56(15):6113-40. PubMed ID: 18624452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo doses of acrylamide and glycidamide in humans after intake of acrylamide-rich food.
    Vikström AC; Abramsson-Zetterberg L; Naruszewicz M; Athanassiadis I; Granath FN; Törnqvist MÅ
    Toxicol Sci; 2011 Jan; 119(1):41-9. PubMed ID: 20952504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a database on acrylamide for use in epidemiological studies.
    Konings EJ; Hogervorst JG; van Rooij L; Schouten LJ; Sizoo EA; van Egmond HP; Goldbohm RA; van den Brandt PA
    Eur J Clin Nutr; 2010 May; 64(5):534-40. PubMed ID: 20234383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of hemoglobin adducts of acrylamide after its ingestion in rats is dependent on age and sex.
    Sánchez J; Cabrer JM; Rosselló CA; Palou A; Picó C
    J Agric Food Chem; 2008 Jul; 56(13):5096-101. PubMed ID: 18540624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of acrylamide formation induced by microwave and conventional heating methods.
    Yuan Y; Chen F; Zhao GH; Liu J; Zhang HX; Hu XS
    J Food Sci; 2007 May; 72(4):C212-6. PubMed ID: 17995763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of acrylamide, a carcinogen formed in heated foodstuffs.
    Tareke E; Rydberg P; Karlsson P; Eriksson S; Törnqvist M
    J Agric Food Chem; 2002 Aug; 50(17):4998-5006. PubMed ID: 12166997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the correlation of the acrylamide content and the antioxidant activity of model cookies.
    Summa C; Wenzl T; Brohee M; De La Calle B; Anklam E
    J Agric Food Chem; 2006 Feb; 54(3):853-9. PubMed ID: 16448194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations between estimated acrylamide intakes, and hemoglobin AA adducts in a sample from the Malmö Diet and Cancer cohort.
    Wirfält E; Paulsson B; Törnqvist M; Axmon A; Hagmar L
    Eur J Clin Nutr; 2008 Mar; 62(3):314-23. PubMed ID: 17356560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations of factors that influence the acrylamide content of heated foodstuffs.
    Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M
    J Agric Food Chem; 2003 Nov; 51(24):7012-8. PubMed ID: 14611163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of oil degradation components in the formation of acrylamide in fried foodstuffs.
    Mestdagh F; Castelein P; Van Peteghem C; De Meulenaer B
    J Agric Food Chem; 2008 Aug; 56(15):6141-4. PubMed ID: 18624436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micronucleated erythrocytes as an index of cytogenetic damage in humans: demographic and dietary factors associated with micronucleated erythrocytes in splenectomized subjects.
    Smith DF; MacGregor JT; Hiatt RA; Hooper NK; Wehr CM; Peters B; Goldman LR; Yuan LA; Smith PA; Becker CE
    Cancer Res; 1990 Aug; 50(16):5049-54. PubMed ID: 2379170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.