These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 18485804)
1. Low-dose ionizing radiation and chromosome translocations: a review of the major considerations for human biological dosimetry. Tucker JD Mutat Res; 2008; 659(3):211-20. PubMed ID: 18485804 [TBL] [Abstract][Full Text] [Related]
2. Persistence of chromosome aberrations following acute radiation: II, does it matter how translocations are scored? Tucker JD; Cofield J; Matsumoto K; Ramsey MJ; Freeman DC Environ Mol Mutagen; 2005; 45(2-3):249-57. PubMed ID: 15657913 [TBL] [Abstract][Full Text] [Related]
3. Persistence of chromosome aberrations following acute radiation: I, PAINT translocations, dicentrics, rings, fragments, and insertions. Tucker JD; Cofield J; Matsumoto K; Ramsey MJ; Freeman DC Environ Mol Mutagen; 2005; 45(2-3):229-48. PubMed ID: 15657915 [TBL] [Abstract][Full Text] [Related]
4. Biological dosimetry of chernobyl cleanup workers: inclusion of data on age and smoking provides improved radiation dose estimates. Moore II DH; Tucker JD Radiat Res; 1999 Dec; 152(6):655-64. PubMed ID: 10581536 [TBL] [Abstract][Full Text] [Related]
5. Do recorded doses overestimate true doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of Estonian workers by fluorescence in situ hybridization. Littlefield LG; McFee AF; Salomaa SI; Tucker JD; Inskip PD; Sayer AM; Lindholm C; Mäkinen S; Mustonen R; Sorensen K; Tekkel M; Veidebaum T; Auvinen A; Boice JD Radiat Res; 1998 Aug; 150(2):237-49. PubMed ID: 9692369 [TBL] [Abstract][Full Text] [Related]
6. Health impacts of large releases of radionuclides. Cytogenetic effects as quantitative indicators of radiation exposure. Bauchinger M Ciba Found Symp; 1997; 203():188-99; discussion 199-204, 232-4. PubMed ID: 9339319 [TBL] [Abstract][Full Text] [Related]
7. Usefulness and limits of biological dosimetry based on cytogenetic methods. Léonard A; Rueff J; Gerber GB; Léonard ED Radiat Prot Dosimetry; 2005; 115(1-4):448-54. PubMed ID: 16381765 [TBL] [Abstract][Full Text] [Related]
8. Time-course of translocation and dicentric frequencies in a radiation accident case. Bauchinger M; Schmid E; Braselmann H Int J Radiat Biol; 2001 May; 77(5):553-7. PubMed ID: 11382333 [TBL] [Abstract][Full Text] [Related]
9. Persistence of radiation-induced translocations in human peripheral blood determined by chromosome painting. Matsumoto K; Ramsey MJ; Nelson DO; Tucker JD Radiat Res; 1998 Jun; 149(6):602-13. PubMed ID: 9611099 [TBL] [Abstract][Full Text] [Related]
10. Follow-up of stable chromosomal aberrations in gamma-ray irradiated non-human primates. Gregoire E; Sorokine-Durm I; Bertho JM; Jacquet N; Delbos M; Demarquay C; Voisin P; Roy L Int J Radiat Biol; 2006 Jul; 82(7):493-502. PubMed ID: 16882621 [TBL] [Abstract][Full Text] [Related]
11. An assessment of immediate DNA damage to occupationally exposed workers to low dose ionizing radiation by using the comet assay. Martínez A; Coleman M; Romero-Talamás CA; Frias S Rev Invest Clin; 2010; 62(1):23-30. PubMed ID: 20415056 [TBL] [Abstract][Full Text] [Related]
12. Biodosimetry using chromosomal translocations measured by FISH in a population chronically exposed to low dose-rate 60Co gamma-irradiation. Hsieh WA; Lucas JN; Hwang JJ; Chan CC; Chang WP Int J Radiat Biol; 2001 Jul; 77(7):797-804. PubMed ID: 11454280 [TBL] [Abstract][Full Text] [Related]
13. Estimating the lowest detectable dose of ionizing radiation by FISH whole-chromosome painting. Tucker JD; Luckinbill LS Radiat Res; 2011 May; 175(5):631-7. PubMed ID: 21443424 [TBL] [Abstract][Full Text] [Related]
14. Issues in cytogenetic biological dosimetry: emphasis on radiation environments in space. Straume T; Bender MA Radiat Res; 1997 Nov; 148(5 Suppl):S60-70. PubMed ID: 9355858 [TBL] [Abstract][Full Text] [Related]
15. Biological dosimetry of beta-ray exposure from tritium using chromosome translocations in human lymphocytes analyzed by fluorescence in situ hybridization. Deng W; Morrison DP; Gale KL; Lucas JN Radiat Res; 1998 Oct; 150(4):400-5. PubMed ID: 9768853 [TBL] [Abstract][Full Text] [Related]
17. Possibilities and limitations of fluorescence in situ hybridization technique in retrospective detection of low dose radiation exposure in post-chernobyl human cohorts. Maznyk NA; Vinnikov VA Tsitol Genet; 2005; 39(4):25-31. PubMed ID: 16396328 [TBL] [Abstract][Full Text] [Related]
18. Differences in the yields of dicentrics and reciprocal translocations observed in the chromosomes of irradiated human skin fibroblasts and blood lymphocytes from the same healthy individuals. Virsik-Peuckert P; Rave-Fränk M; Langebrake U; Schmidberger H Radiat Res; 1997 Sep; 148(3):209-15. PubMed ID: 9291351 [TBL] [Abstract][Full Text] [Related]
19. Why can't we find a better biological indicator of dose? Voisin P; Roy L; Benderitter M Radiat Prot Dosimetry; 2004; 112(4):465-9. PubMed ID: 15623880 [TBL] [Abstract][Full Text] [Related]
20. Study of the tools available in biological dosimetry to estimate the dose in cases of accidental complex overexposure to ionizing radiation: the Lilo accident. Roy L; Gregoire E; Durand V; Buard V; Delbos M; Paillole N; Sorokine-Durm I; Gourmelon P; Voisin P Int J Radiat Biol; 2006 Jan; 82(1):39-48. PubMed ID: 16546902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]