These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
559 related articles for article (PubMed ID: 18485842)
1. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842 [TBL] [Abstract][Full Text] [Related]
2. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
3. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Venugopal J; Prabhakaran MP; Zhang Y; Low S; Choon AT; Ramakrishna S Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):2065-81. PubMed ID: 20308115 [TBL] [Abstract][Full Text] [Related]
5. Bioresorbable composites prepared by supercritical fluid foaming. Mathieu LM; Montjovent MO; Bourban PE; Pioletti DP; Månson JA J Biomed Mater Res A; 2005 Oct; 75(1):89-97. PubMed ID: 16037939 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
7. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. Daniels AU; Chang MK; Andriano KP J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
10. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549 [TBL] [Abstract][Full Text] [Related]
11. Tissue engineering scaffolds for the regeneration of craniofacial bone. Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334 [TBL] [Abstract][Full Text] [Related]
12. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431 [TBL] [Abstract][Full Text] [Related]
13. [Development of nanohydroxyapatite composites as bone grafting materials]. Wang R; Wen D; Xie X; Zhong Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1231-4. PubMed ID: 19024483 [TBL] [Abstract][Full Text] [Related]
14. [Research development of hydroxyapatite-based composites used as hard tissue replacement]. Ning C; Dai K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):550-4. PubMed ID: 14565037 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites. Guo W; Zhang Y; Zhang W J Biomed Mater Res A; 2013 Sep; 101(9):2500-6. PubMed ID: 23348918 [TBL] [Abstract][Full Text] [Related]
16. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. Oliveira JM; Costa SA; Leonor IB; Malafaya PB; Mano JF; Reis RL J Biomed Mater Res A; 2009 Feb; 88(2):470-80. PubMed ID: 18306322 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140 [TBL] [Abstract][Full Text] [Related]
18. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers. Peng F; Shaw MT; Olson JR; Wei M J Biomater Appl; 2013 Feb; 27(6):641-9. PubMed ID: 22274879 [TBL] [Abstract][Full Text] [Related]
19. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible interface films deposited within porous polymers by Atomic Layer Deposition (ALD). Liang X; Lynn AD; King DM; Bryant SJ; Weimer AW ACS Appl Mater Interfaces; 2009 Sep; 1(9):1988-95. PubMed ID: 20355824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]