These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 18485872)

  • 41. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli.
    Choudhury D; Thompson A; Stojanoff V; Langermann S; Pinkner J; Hultgren SJ; Knight SD
    Science; 1999 Aug; 285(5430):1061-6. PubMed ID: 10446051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The outer membrane usher guarantees the formation of functional pili by selectively catalyzing donor-strand exchange between subunits that are adjacent in the mature pilus.
    Nishiyama M; Glockshuber R
    J Mol Biol; 2010 Feb; 396(1):1-8. PubMed ID: 20004668
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis.
    Pakharukova N; Garnett JA; Tuittila M; Paavilainen S; Diallo M; Xu Y; Matthews SJ; Zavialov AV
    PLoS Pathog; 2015 Nov; 11(11):e1005269. PubMed ID: 26587649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of CfaA suggests a new family of chaperones essential for assembly of class 5 fimbriae.
    Bao R; Fordyce A; Chen YX; McVeigh A; Savarino SJ; Xia D
    PLoS Pathog; 2014 Aug; 10(8):e1004316. PubMed ID: 25122114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function.
    Hung DL; Hultgren SJ
    J Struct Biol; 1998 Dec; 124(2-3):201-20. PubMed ID: 10049807
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis.
    Munera D; Hultgren S; Fernández LA
    Mol Microbiol; 2007 Apr; 64(2):333-46. PubMed ID: 17378923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher.
    Munera D; Palomino C; Fernández LA
    Mol Microbiol; 2008 Aug; 69(4):911-25. PubMed ID: 18627459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein.
    Psonis JJ; Chahales P; Henderson NS; Rigel NW; Hoffman PS; Thanassi DG
    J Biol Chem; 2019 Sep; 294(39):14357-14369. PubMed ID: 31391254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification of the outer membrane usher protein and periplasmic chaperone-subunit complexes from the P and type 1 pilus systems.
    Henderson NS; Thanassi DG
    Methods Mol Biol; 2013; 966():37-52. PubMed ID: 23299727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of the P pilus rod subunit PapA.
    Verger D; Bullitt E; Hultgren SJ; Waksman G
    PLoS Pathog; 2007 May; 3(5):e73. PubMed ID: 17511517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of the CupB6 adhesive tip from the chaperone-usher family of pili from Pseudomonas aeruginosa.
    Rasheed M; Garnett J; Pérez-Dorado I; Muhl D; Filloux A; Matthews S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1500-5. PubMed ID: 27481165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Donor strand exchange and conformational changes during E. coli fimbrial formation.
    Le Trong I; Aprikian P; Kidd BA; Thomas WE; Sokurenko EV; Stenkamp RE
    J Struct Biol; 2010 Dec; 172(3):380-8. PubMed ID: 20570733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of fibre assembly through the chaperone-usher pathway.
    Vetsch M; Erilov D; Molière N; Nishiyama M; Ignatov O; Glockshuber R
    EMBO Rep; 2006 Jul; 7(7):734-8. PubMed ID: 16767077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Second order rate constants of donor-strand exchange reveal individual amino acid residues important in determining the subunit specificity of pilus biogenesis.
    Leney AC; Phan G; Allen W; Verger D; Waksman G; Radford SE; Ashcroft AE
    J Am Soc Mass Spectrom; 2011 Jul; 22(7):1214-23. PubMed ID: 21953104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural biology of the chaperone-usher pathway of pilus biogenesis.
    Waksman G; Hultgren SJ
    Nat Rev Microbiol; 2009 Nov; 7(11):765-74. PubMed ID: 19820722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chaperone-usher pathways: diversity and pilus assembly mechanism.
    Busch A; Waksman G
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1112-22. PubMed ID: 22411982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism.
    Galkin VE; Kolappan S; Ng D; Zong Z; Li J; Yu X; Egelman EH; Craig L
    J Bacteriol; 2013 Apr; 195(7):1360-70. PubMed ID: 23175654
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic networks control plug stabilization in the PapC usher.
    Pham T; Henderson NS; Werneburg GT; Thanassi DG; Delcour AH
    Mol Membr Biol; 2015; 32(5-8):198-207. PubMed ID: 27181766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The molecular dissection of the chaperone-usher pathway.
    Geibel S; Waksman G
    Biochim Biophys Acta; 2014 Aug; 1843(8):1559-67. PubMed ID: 24140205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly.
    Hedenström M; Emtenäs H; Pemberton N; Aberg V; Hultgren SJ; Pinkner JS; Tegman V; Almqvist F; Sethson I; Kihlberg J
    Org Biomol Chem; 2005 Dec; 3(23):4193-200. PubMed ID: 16294247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.