BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18486205)

  • 1. An adaptable hydrogel array format for 3-dimensional cell culture and analysis.
    Jongpaiboonkit L; King WJ; Lyons GE; Paguirigan AL; Warrick JW; Beebe DJ; Murphy WL
    Biomaterials; 2008 Aug; 29(23):3346-56. PubMed ID: 18486205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays.
    Jongpaiboonkit L; King WJ; Murphy WL
    Tissue Eng Part A; 2009 Feb; 15(2):343-53. PubMed ID: 18759676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of FGF2 and PEG hydrogel matrix properties on hMSC viability and spreading.
    King WJ; Jongpaiboonkit L; Murphy WL
    J Biomed Mater Res A; 2010 Jun; 93(3):1110-23. PubMed ID: 19768790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-instructive starPEG-heparin-collagen composite matrices.
    Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C
    Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness.
    Sun AX; Lin H; Fritch MR; Shen H; Alexander PG; DeHart M; Tuan RS
    Acta Biomater; 2017 Aug; 58():302-311. PubMed ID: 28611002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary morphogenesis in PEG-collagen hydrogels.
    Singh RK; Seliktar D; Putnam AJ
    Biomaterials; 2013 Dec; 34(37):9331-40. PubMed ID: 24021759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatocyte viability and protein expression within hydrogel microstructures.
    Itle LJ; Koh WG; Pishko MV
    Biotechnol Prog; 2005; 21(3):926-32. PubMed ID: 15932275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating gradient hydrogel scaffolds for 3D cell culture.
    Chatterjee K; Young MF; Simon CG
    Comb Chem High Throughput Screen; 2011 May; 14(4):227-36. PubMed ID: 21143178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive hydrogels with enhanced initial and sustained cell interactions.
    Browning MB; Russell B; Rivera J; Höök M; Cosgriff-Hernandez EM
    Biomacromolecules; 2013 Jul; 14(7):2225-33. PubMed ID: 23758437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels.
    Garagorri N; Fermanian S; Thibault R; Ambrose WM; Schein OD; Chakravarti S; Elisseeff J
    Acta Biomater; 2008 Sep; 4(5):1139-1147. PubMed ID: 18567550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering.
    Chen JX; Yuan J; Wu YL; Wang P; Zhao P; Lv GZ; Chen JH
    J Biomed Mater Res A; 2018 Jan; 106(1):192-200. PubMed ID: 28884502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable and biocompatible synthetic saccharide-Peptide hydrogels for three-dimensional stem cell culture.
    Chawla K; Yu TB; Liao SW; Guan Z
    Biomacromolecules; 2011 Mar; 12(3):560-7. PubMed ID: 21302962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamidoamine dendrimer-PEG hydrogel and its mechanical property on differentiation of mesenchymal stem cells.
    Bi X; Maturavongsadit P; Tan Y; Watts M; Bi E; Kegley Z; Morton S; Lu L; Wang Q; Liang A
    Biomed Mater Eng; 2019; 30(1):111-123. PubMed ID: 30562893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.
    Moraes C; Wang G; Sun Y; Simmons CA
    Biomaterials; 2010 Jan; 31(3):577-84. PubMed ID: 19819010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments.
    Sharma S; Floren M; Ding Y; Stenmark KR; Tan W; Bryant SJ
    Biomaterials; 2017 Oct; 143():17-28. PubMed ID: 28756193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry.
    A S; Lyu J; Johnson M; Creagh-Flynn J; Zhou D; Lara-Sáez I; Xu Q; Tai H; Wang W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38918-38924. PubMed ID: 32805952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.