BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1848637)

  • 1. CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli.
    Plumbridge J; Kolb A
    J Mol Biol; 1991 Feb; 217(4):661-79. PubMed ID: 1848637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix.
    Plumbridge J; Kolb A
    J Mol Biol; 1995 Jun; 249(5):890-902. PubMed ID: 7791215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli.
    Plumbridge J
    Nucleic Acids Res; 2001 Jan; 29(2):506-14. PubMed ID: 11139621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli.
    Peri KG; Goldie H; Waygood EB
    Biochem Cell Biol; 1990 Jan; 68(1):123-37. PubMed ID: 2190615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA bending and expression of the divergent nagE-B operons.
    Plumbridge J; Kolb A
    Nucleic Acids Res; 1998 Mar; 26(5):1254-60. PubMed ID: 9469834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS.
    Plumbridge J
    Mol Microbiol; 1998 Jan; 27(2):369-80. PubMed ID: 9484892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state.
    Plumbridge JA
    Mol Microbiol; 1991 Aug; 5(8):2053-62. PubMed ID: 1766379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites.
    Plumbridge J
    EMBO J; 1995 Aug; 14(16):3958-65. PubMed ID: 7545108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP.
    Plumbridge J; Pellegrini O
    Mol Microbiol; 2004 Apr; 52(2):437-49. PubMed ID: 15066032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in vivo.
    Plumbridge J; Kolb A
    Mol Microbiol; 1993 Dec; 10(5):973-81. PubMed ID: 7934873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon.
    Plumbridge JA
    J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to achieve constitutive expression of a gene within an inducible operon: the example of the nagC gene of Escherichia coli.
    Plumbridge J
    J Bacteriol; 1996 May; 178(9):2629-36. PubMed ID: 8626331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation.
    Vogler AP; Lengeler JW
    Mol Gen Genet; 1989 Oct; 219(1-2):97-105. PubMed ID: 2693951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon.
    Plumbridge JA
    Mol Microbiol; 1989 Apr; 3(4):505-15. PubMed ID: 2668691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression.
    Charlier D; Roovers M; Van Vliet F; Boyen A; Cunin R; Nakamura Y; Glansdorff N; Piérard A
    J Mol Biol; 1992 Jul; 226(2):367-86. PubMed ID: 1640456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of open complex formation at the Escherichia coli galactose operon promoters. Simultaneous interaction of RNA polymerase, gal repressor and CAP/cAMP.
    Goodrich JA; McClure WR
    J Mol Biol; 1992 Mar; 224(1):15-29. PubMed ID: 1312605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and sequencing of the genes for N-acetylglucosamine use that construct divergent operons (nagE-nagAC) from Vibrio cholerae non-O1.
    Yamano N; Oura N; Wang J; Fujishima S
    Biosci Biotechnol Biochem; 1997 Aug; 61(8):1349-53. PubMed ID: 9301118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition.
    Pennetier C; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.