These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 18486472)
1. Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Segura-Cabrera A; Rodríguez-Pérez MA Bioorg Med Chem Lett; 2008 Jun; 18(11):3152-7. PubMed ID: 18486472 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Costa MS; Boechat N; Rangel EA; da Silva Fde C; de Souza AM; Rodrigues CR; Castro HC; Junior IN; Lourenço MC; Wardell SM; Ferreira VF Bioorg Med Chem; 2006 Dec; 14(24):8644-53. PubMed ID: 16949290 [TBL] [Abstract][Full Text] [Related]
3. Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Simithy J; Reeve N; Hobrath JV; Reynolds RC; Calderón AI Tuberculosis (Edinb); 2014 Mar; 94(2):152-8. PubMed ID: 24429106 [TBL] [Abstract][Full Text] [Related]
4. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Gill C; Jadhav G; Shaikh M; Kale R; Ghawalkar A; Nagargoje D; Shiradkar M Bioorg Med Chem Lett; 2008 Dec; 18(23):6244-7. PubMed ID: 18930654 [TBL] [Abstract][Full Text] [Related]
5. Structure-based in silico design of a high-affinity dipeptide inhibitor for novel protein drug target Shikimate kinase of Mycobacterium tuberculosis. Kumar M; Verma S; Sharma S; Srinivasan A; Singh TP; Kaur P Chem Biol Drug Des; 2010 Sep; 76(3):277-84. PubMed ID: 20626408 [TBL] [Abstract][Full Text] [Related]
6. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Menendez C; Chollet A; Rodriguez F; Inard C; Pasca MR; Lherbet C; Baltas M Eur J Med Chem; 2012 Jun; 52():275-83. PubMed ID: 22483635 [TBL] [Abstract][Full Text] [Related]
7. Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. Kumar A; Chaturvedi V; Bhatnagar S; Sinha S; Siddiqi MI J Chem Inf Model; 2009 Jan; 49(1):35-42. PubMed ID: 19063713 [TBL] [Abstract][Full Text] [Related]
8. A note on the antitubercular activities of 1-aryl-5-benzylsulfanyltetrazoles. Adamec J; Waisser K; Kunes J; Kaustová J Arch Pharm (Weinheim); 2005 Aug; 338(8):385-9. PubMed ID: 16041837 [TBL] [Abstract][Full Text] [Related]
9. Clubbed triazoles: a novel approach to antitubercular drugs. Shiradkar M; Suresh Kumar GV; Dasari V; Tatikonda S; Akula KC; Shah R Eur J Med Chem; 2007 Jun; 42(6):807-16. PubMed ID: 17239490 [TBL] [Abstract][Full Text] [Related]
10. Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. Vanheusden V; Munier-Lehmann H; Froeyen M; Busson R; Rozenski J; Herdewijn P; Van Calenbergh S J Med Chem; 2004 Dec; 47(25):6187-94. PubMed ID: 15566289 [TBL] [Abstract][Full Text] [Related]
11. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition. Yang Y; Gao P; Liu Y; Ji X; Gan M; Guan Y; Hao X; Li Z; Xiao C Bioorg Med Chem Lett; 2011 Jul; 21(13):3943-6. PubMed ID: 21641210 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Menendez C; Gau S; Lherbet C; Rodriguez F; Inard C; Pasca MR; Baltas M Eur J Med Chem; 2011 Nov; 46(11):5524-31. PubMed ID: 21944473 [TBL] [Abstract][Full Text] [Related]
13. 3D-QSAR studies on antitubercular thymidine monophosphate kinase inhibitors based on different alignment methods. Aparna V; Jeevan J; Ravi M; Desiraju GR; Gopalakrishnan B Bioorg Med Chem Lett; 2006 Feb; 16(4):1014-20. PubMed ID: 16290929 [TBL] [Abstract][Full Text] [Related]
14. Structure of shikimate kinase from Mycobacterium tuberculosis reveals the binding of shikimic acid. Pereira JH; de Oliveira JS; Canduri F; Dias MV; Palma MS; Basso LA; Santos DS; de Azevedo WF Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 2):2310-9. PubMed ID: 15583379 [TBL] [Abstract][Full Text] [Related]
15. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Shanmugavelan P; Nagarajan S; Sathishkumar M; Ponnuswamy A; Yogeeswari P; Sriram D Bioorg Med Chem Lett; 2011 Dec; 21(24):7273-6. PubMed ID: 22061642 [TBL] [Abstract][Full Text] [Related]
16. Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids. Addla D; Jallapally A; Gurram D; Yogeeswari P; Sriram D; Kantevari S Bioorg Med Chem Lett; 2014 Jan; 24(1):233-6. PubMed ID: 24314670 [TBL] [Abstract][Full Text] [Related]
17. Interaction of shikimic acid with shikimate kinase. Pereira JH; de Oliveira JS; Canduri F; Dias MV; Palma MS; Basso LA; de Azevedo WF; Santos DS Biochem Biophys Res Commun; 2004 Dec; 325(1):10-7. PubMed ID: 15522194 [TBL] [Abstract][Full Text] [Related]
19. New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Chauhan K; Sharma M; Trivedi P; Chaturvedi V; Chauhan PM Bioorg Med Chem Lett; 2014 Sep; 24(17):4166-70. PubMed ID: 25127167 [TBL] [Abstract][Full Text] [Related]
20. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of mycobacterium tuberculosis. Manetti F; Magnani M; Castagnolo D; Passalacqua L; Botta M; Corelli F; Saddi M; Deidda D; De Logu A ChemMedChem; 2006 Sep; 1(9):973-89. PubMed ID: 16892466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]