These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 18486472)
41. Design, synthesis and antitubercular activity of diarylmethylnaphthol derivatives. Das SK; Panda G; Chaturvedi V; Manju YS; Gaikwad AK; Sinha S Bioorg Med Chem Lett; 2007 Oct; 17(20):5586-9. PubMed ID: 17764933 [TBL] [Abstract][Full Text] [Related]
42. A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models. Gopalakrishnan B; Aparna V; Jeevan J; Ravi M; Desiraju GR J Chem Inf Model; 2005; 45(4):1101-8. PubMed ID: 16045305 [TBL] [Abstract][Full Text] [Related]
43. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition. Mehra R; Rajput VS; Gupta M; Chib R; Kumar A; Wazir P; Khan IA; Nargotra A J Chem Inf Model; 2016 May; 56(5):930-40. PubMed ID: 27149193 [TBL] [Abstract][Full Text] [Related]
44. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Subba Rao G; Vijayakrishnan R; Kumar M Chem Biol Drug Des; 2008 Nov; 72(5):444-9. PubMed ID: 19012578 [TBL] [Abstract][Full Text] [Related]
45. Investigating the structural basis of arylamides to improve potency against M. tuberculosis strain through molecular dynamics simulations. Punkvang A; Saparpakorn P; Hannongbua S; Wolschann P; Beyer A; Pungpo P Eur J Med Chem; 2010 Dec; 45(12):5585-93. PubMed ID: 20888672 [TBL] [Abstract][Full Text] [Related]
46. Mechanism of irreversible inhibition of Mycobacterium tuberculosis shikimate kinase by ilimaquinone. Simithy J; Fuanta NR; Hobrath JV; Kochanowska-Karamyan A; Hamann MT; Goodwin DC; Calderón AI Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):731-739. PubMed ID: 29654976 [TBL] [Abstract][Full Text] [Related]
47. Design, synthesis and characterization of novel inhibitors against mycobacterial β-ketoacyl CoA reductase FabG4. Banerjee DR; Dutta D; Saha B; Bhattacharyya S; Senapati K; Das AK; Basak A Org Biomol Chem; 2014 Jan; 12(1):73-85. PubMed ID: 24129589 [TBL] [Abstract][Full Text] [Related]
48. Structure-based virtual screening as a tool for the identification of novel inhibitors against Mycobacterium tuberculosis 3-dehydroquinate dehydratase. Petersen GO; Saxena S; Renuka J; Soni V; Yogeeswari P; Santos DS; Bizarro CV; Sriram D J Mol Graph Model; 2015 Jul; 60():124-31. PubMed ID: 26043661 [TBL] [Abstract][Full Text] [Related]
50. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Yempala T; Sridevi JP; Yogeeswari P; Sriram D; Kantevari S Eur J Med Chem; 2014 Jan; 71():160-7. PubMed ID: 24292337 [TBL] [Abstract][Full Text] [Related]
51. Substitution of the phosphonic acid and hydroxamic acid functionalities of the DXR inhibitor FR900098: an attempt to improve the activity against Mycobacterium tuberculosis. Andaloussi M; Lindh M; Björkelid C; Suresh S; Wieckowska A; Iyer H; Karlén A; Larhed M Bioorg Med Chem Lett; 2011 Sep; 21(18):5403-7. PubMed ID: 21824775 [TBL] [Abstract][Full Text] [Related]
52. Synthesis, structure, and antimycobacterial activity of 6-[1(3H)-isobenzofuranylidenemethyl]purines and analogs. Braendvang M; Bakken V; Gundersen LL Bioorg Med Chem; 2009 Sep; 17(18):6512-6. PubMed ID: 19709890 [TBL] [Abstract][Full Text] [Related]
53. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. Hartmann MD; Bourenkov GP; Oberschall A; Strizhov N; Bartunik HD J Mol Biol; 2006 Dec; 364(3):411-23. PubMed ID: 17020768 [TBL] [Abstract][Full Text] [Related]
54. Virtual screening against Mycobacterium tuberculosis dihydrofolate reductase: suggested workflow for compound prioritization using structure interaction fingerprints. Kumar A; Siddiqi MI J Mol Graph Model; 2008 Nov; 27(4):476-88. PubMed ID: 18829358 [TBL] [Abstract][Full Text] [Related]
55. Structure-aided design of inhibitors of Mycobacterium tuberculosis thymidylate kinase. Van Calenbergh S Verh K Acad Geneeskd Belg; 2006; 68(4):223-48. PubMed ID: 17214439 [TBL] [Abstract][Full Text] [Related]
56. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Phatak PS; Bakale RD; Kulkarni RS; Dhumal ST; Dixit PP; Krishna VS; Sriram D; Khedkar VM; Haval KP Bioorg Med Chem Lett; 2020 Nov; 30(22):127579. PubMed ID: 32987135 [TBL] [Abstract][Full Text] [Related]
57. A convenient synthesis and screening of benzosuberone bearing 1,2,3-triazoles against Mycobacterium tuberculosis. Sajja Y; Vanguru S; Jilla L; Vulupala HR; Bantu R; Yogeswari P; Sriram D; Nagarapu L Bioorg Med Chem Lett; 2016 Sep; 26(17):4292-5. PubMed ID: 27476139 [TBL] [Abstract][Full Text] [Related]
58. Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Wilkinson BL; Long H; Sim E; Fairbanks AJ Bioorg Med Chem Lett; 2008 Dec; 18(23):6265-7. PubMed ID: 18926698 [TBL] [Abstract][Full Text] [Related]
59. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Singh BK; Yadav AK; Kumar B; Gaikwad A; Sinha SK; Chaturvedi V; Tripathi RP Carbohydr Res; 2008 May; 343(7):1153-62. PubMed ID: 18346719 [TBL] [Abstract][Full Text] [Related]
60. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Odell LR; Nilsson MT; Gising J; Lagerlund O; Muthas D; Nordqvist A; Karlén A; Larhed M Bioorg Med Chem Lett; 2009 Aug; 19(16):4790-3. PubMed ID: 19560924 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]