These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18487125)

  • 1. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.
    Costin O; Luo G; Tanveer S
    Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2775-88. PubMed ID: 18487125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-time asymptotics of the Navier-Stokes and vorticity equations on R(3).
    Gallay T; Wayne CE
    Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2155-88. PubMed ID: 12804232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stokes phenomena in discrete Painlevé II.
    Joshi N; Lustri CJ; Luu S
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160539. PubMed ID: 28293132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On a modified form of navier-stokes equations for three-dimensional flows.
    Venetis J
    ScientificWorldJournal; 2015; 2015():692494. PubMed ID: 25918743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-consistent chaotic transport in fluids and plasmas.
    Del-Castillo-Negrete D
    Chaos; 2000 Mar; 10(1):75-88. PubMed ID: 12779364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical modeling of capillary flow in tubes of nonuniform cross section.
    Liou WW; Peng Y; Parker PE
    J Colloid Interface Sci; 2009 May; 333(1):389-99. PubMed ID: 19232635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable templates using large deformation kinematics.
    Christensen GE; Rabbitt RD; Miller MI
    IEEE Trans Image Process; 1996; 5(10):1435-47. PubMed ID: 18290061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stokes phenomena in discrete Painlevé I.
    Joshi N; Lustri CJ
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140874. PubMed ID: 27547094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Effect of Fast Rotation and Vertical Viscosity on the Lifespan of the 3
    Lin Q; Liu X; Titi ES
    J Math Fluid Mech; 2022; 24(3):73. PubMed ID: 35722205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New variational principles for locating periodic orbits of differential equations.
    Boghosian BM; Fazendeiro LM; Lätt J; Tang H; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2211-8. PubMed ID: 21536567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-similarity in turbulence and its applications.
    Ohkitani K
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210048. PubMed ID: 35527638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.
    Leonardi E; Angeli C
    J Phys Chem B; 2010 Jan; 114(1):151-64. PubMed ID: 20000727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamics at the smallest scales: a solvability criterion for Navier-Stokes equations in high dimensions.
    Viswanathan TM; Viswanathan GM
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):359-70. PubMed ID: 21149377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Navier-Stokes regularity problem.
    Robinson JC
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2174):20190526. PubMed ID: 32507084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of viscosity in the dynamics of two point vortices: exact results.
    Agullo O; Verga A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056304. PubMed ID: 11415003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropic lattice Boltzmann model for Burgers's equation.
    Boghosian BM; Love P; Yepez J
    Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1691-701. PubMed ID: 15306440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.