BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18487208)

  • 1. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.
    Evans JP; Niemevz F; Buldain G; de Montellano PO
    J Biol Chem; 2008 Jul; 283(28):19530-9. PubMed ID: 18487208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human heme oxygenase oxidation of 5- and 15-phenylhemes.
    Wang J; Niemevz F; Lad L; Huang L; Alvarez DE; Buldain G; Poulos TL; de Montellano PR
    J Biol Chem; 2004 Oct; 279(41):42593-604. PubMed ID: 15297453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of alpha-meso-formylmesoheme by heme oxygenase. Electronic control of the reaction regiospecificity.
    Torpey J; Ortiz de Montellano PR
    J Biol Chem; 1997 Aug; 272(35):22008-14. PubMed ID: 9268339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of the meso-methylmesoheme regioisomers by heme oxygenase. Electronic control of the reaction regiospecificity.
    Torpey J; Ortiz de Montellano PR
    J Biol Chem; 1996 Oct; 271(42):26067-73. PubMed ID: 8824248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.
    Wang J; Lad L; Poulos TL; Ortiz de Montellano PR
    J Biol Chem; 2005 Jan; 280(4):2797-806. PubMed ID: 15525643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymic conversion of alpha-oxyprotohaem IX into biliverdin IX alpha by haem oxygenase.
    Yoshinaga T; Sudo Y; Sano S
    Biochem J; 1990 Sep; 270(3):659-64. PubMed ID: 2122884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.
    Wang J; de Montellano PR
    J Biol Chem; 2003 May; 278(22):20069-76. PubMed ID: 12626517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents.
    Liu Y; Moënne-Loccoz P; Loehr TM; Ortiz de Montellano PR
    J Biol Chem; 1997 Mar; 272(11):6909-17. PubMed ID: 9054378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic turnover dependent modification of the Pseudomonas aeruginosa heme oxygenase (pa-HO) by 5,6-O-isopropyledine-2-O-allyl-ascorbic acid.
    Bhakta MN; Olabisi A; Wimalasena K; Wilks A
    J Inorg Biochem; 2008 Feb; 102(2):251-9. PubMed ID: 17923157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network.
    Wang J; Evans JP; Ogura H; La Mar GN; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(1):61-73. PubMed ID: 16388581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized isoporphyrin intermediates in the inactivation of horseradish peroxidase by alkylhydrazines.
    Ator MA; David SK; Ortiz de Montellano PR
    J Biol Chem; 1989 Jun; 264(16):9250-7. PubMed ID: 2722829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme.
    Migita CT; Zhang X; Yoshida T
    Eur J Biochem; 2003 Feb; 270(4):687-98. PubMed ID: 12581208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme.
    Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M
    J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methene bridge carbon atom elimination in oxidative heme degradation catalyzed by heme oxygenase and NADPH-cytochrome P-450 reductase.
    Docherty JC; Firneisz GD; Schacter BA
    Arch Biochem Biophys; 1984 Dec; 235(2):657-64. PubMed ID: 6440489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin.
    Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T
    Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human heme oxygenase-1 efficiently catabolizes heme in the absence of biliverdin reductase.
    Reed JR; Huber WJ; Backes WL
    Drug Metab Dispos; 2010 Nov; 38(11):2060-6. PubMed ID: 20679134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of oxaporphyrin ring of CO-bound α-verdoheme complexed with heme oxygenase-1 by NADPH-cytochrome P450 reductase.
    Sato H; Higashimoto Y; Sakamoto H; Sugishima M; Shimokawa C; Harada J; Palmer G; Noguchi M
    J Inorg Biochem; 2011 Feb; 105(2):289-96. PubMed ID: 21194630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium.
    Beale SI; Cornejo J
    Arch Biochem Biophys; 1984 Dec; 235(2):371-84. PubMed ID: 6549121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of heme degradation pathway.
    Maines MD
    Curr Protoc Toxicol; 2001 May; Chapter 9():Unit 9.1. PubMed ID: 23045067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reactions of heme- and verdoheme-heme oxygenase-1 complexes with FMN-depleted NADPH-cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN.
    Higashimoto Y; Sato H; Sakamoto H; Takahashi K; Palmer G; Noguchi M
    J Biol Chem; 2006 Oct; 281(42):31659-67. PubMed ID: 16928691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.