BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18487365)

  • 1. MCP-1 deficiency delays regression of pathologic retinal neovascularization in a model of ischemic retinopathy.
    Davies MH; Stempel AJ; Powers MR
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4195-202. PubMed ID: 18487365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased retinal neovascularization in Fas ligand-deficient mice.
    Davies MH; Eubanks JP; Powers MR
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3202-10. PubMed ID: 12824272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina.
    Davies MH; Eubanks JP; Powers MR
    Mol Vis; 2006 May; 12():467-77. PubMed ID: 16710171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered retinal neovascularization in TNF receptor-deficient mice.
    Ilg RC; Davies MH; Powers MR
    Curr Eye Res; 2005 Nov; 30(11):1003-13. PubMed ID: 16282134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification.
    Banin E; Dorrell MI; Aguilar E; Ritter MR; Aderman CM; Smith AC; Friedlander J; Friedlander M
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2125-34. PubMed ID: 16639024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triciribine attenuates pathological neovascularization and vascular permeability in a mouse model of proliferative retinopathy.
    Shan S; Liu F; Ford E; Caldwell RB; Narayanan SP; Somanath PR
    Biomed Pharmacother; 2023 Jun; 162():114714. PubMed ID: 37080089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of CD115
    Brockmann C; Dege S; Crespo-Garcia S; Kociok N; Brockmann T; Strauß O; Joussen AM
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):313-323. PubMed ID: 29185100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble forms of EphrinB2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy.
    Zamora DO; Davies MH; Planck SR; Rosenbaum JT; Powers MR
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2175-82. PubMed ID: 15914639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RhoA activation and effect of Rho-kinase inhibitor in the development of retinal neovascularization in a mouse model of oxygen-induced retinopathy.
    Fang X; Ueno M; Yamashita T; Ikuno Y
    Curr Eye Res; 2011 Nov; 36(11):1028-36. PubMed ID: 21999228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy.
    Zhao L; Ma W; Fariss RN; Wong WT
    Exp Eye Res; 2009 Jun; 88(6):1004-13. PubMed ID: 19176215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Fas-FasL in the development and treatment of ischemic retinopathy.
    Barreiro R; Schadlu R; Herndon J; Kaplan HJ; Ferguson TA
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1282-6. PubMed ID: 12601060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRAIL-deficient mice exhibit delayed regression of retinal neovascularization.
    Hubert KE; Davies MH; Stempel AJ; Griffith TS; Powers MR
    Am J Pathol; 2009 Dec; 175(6):2697-708. PubMed ID: 19893042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization.
    Yoshida S; Yoshida A; Ishibashi T; Elner SG; Elner VM
    J Leukoc Biol; 2003 Jan; 73(1):137-44. PubMed ID: 12525571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy.
    Gardiner TA; Gibson DS; de Gooyer TE; de la Cruz VF; McDonald DM; Stitt AW
    Am J Pathol; 2005 Feb; 166(2):637-44. PubMed ID: 15681845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice.
    Li J; Yu S; Lu X; Cui K; Tang X; Xu Y; Liang X
    Inflamm Res; 2021 Feb; 70(2):183-192. PubMed ID: 33386422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization.
    Kataoka K; Nishiguchi KM; Kaneko H; van Rooijen N; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1431-8. PubMed ID: 21051720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels.
    Li S; Li T; Luo Y; Yu H; Sun Y; Zhou H; Liang X; Huang J; Tang S
    Mol Vis; 2011; 17():3566-73. PubMed ID: 22219652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RANKL blockade suppresses pathological angiogenesis and vascular leakage in ischemic retinopathy.
    Ock S; Park S; Lee J; Kim J
    Biochem Biophys Res Commun; 2019 Aug; 516(2):350-356. PubMed ID: 31208720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model.
    Liu X; Wang D; Liu Y; Luo Y; Ma W; Xiao W; Yu Q
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3749-57. PubMed ID: 20207957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 67-kd laminin receptor is preferentially expressed by proliferating retinal vessels in a murine model of ischemic retinopathy.
    Stitt AW; McKenna D; Simpson DA; Gardiner TA; Harriott P; Archer DB; Nelson J
    Am J Pathol; 1998 May; 152(5):1359-65. PubMed ID: 9588904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.