BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18487418)

  • 1. The endogenous circadian pacemaker imparts a scale-invariant pattern of heart rate fluctuations across time scales spanning minutes to 24 hours.
    Hu K; Scheer FA; Buijs RM; Shea SA
    J Biol Rhythms; 2008 Jun; 23(3):265-73. PubMed ID: 18487418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats.
    Hu K; Scheer FA; Buijs RM; Shea SA
    Cardiovasc Res; 2008 Oct; 80(1):62-8. PubMed ID: 18539630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The suprachiasmatic nucleus functions beyond circadian rhythm generation.
    Hu K; Scheer FA; Ivanov PCh; Buijs RM; Shea SA
    Neuroscience; 2007 Nov; 149(3):508-17. PubMed ID: 17920204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: Involvement of the circadian pacemaker.
    Hu K; Van Someren EJ; Shea SA; Scheer FA
    Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2490-4. PubMed ID: 19202078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular coupling determines scale-invariant behavior of neurons in suprachiasmatic nucleus.
    Zhou J; Gu X; Gu C; Yang H; Weng T; Rohling JHT
    Chronobiol Int; 2020 Dec; 37(12):1669-1676. PubMed ID: 32967468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions.
    Hu K; Meijer JH; Shea SA; vanderLeest HT; Pittman-Polletta B; Houben T; van Oosterhout F; Deboer T; Scheer FA
    PLoS One; 2012; 7(11):e48927. PubMed ID: 23185285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.
    Hsieh WH; Escobar C; Yugay T; Lo MT; Pittman-Polletta B; Salgado-Delgado R; Scheer FA; Shea SA; Buijs RM; Hu K
    J R Soc Interface; 2014 Jul; 11(96):. PubMed ID: 24829282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.
    Ivanov PCh; Hu K; Hilton MF; Shea SA; Stanley HE
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20702-7. PubMed ID: 18093917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in scale invariance of activity fluctuations with aging and in patients with suprasellar tumors.
    Joustra SD; Gu C; Rohling JHT; Pickering L; Klose M; Hu K; Scheer FA; Feldt-Rasmussen U; Jennum PJ; Pereira AM; Biermasz NR; Meijer JH
    Chronobiol Int; 2018 Mar; 35(3):368-377. PubMed ID: 29182371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day.
    Medanic M; Gillette MU
    J Physiol; 1992 May; 450():629-42. PubMed ID: 1432721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian rhythm generation in the cultured suprachiasmatic nucleus.
    Mirmiran M; Koster-Van Hoffen GC; Bos NP
    Brain Res Bull; 1995; 38(3):275-83. PubMed ID: 7496822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-invariant aspects of cardiac dynamics across sleep stages and circadian phases.
    Ivanov PCh
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():445-8. PubMed ID: 17946835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.
    Lo MT; Chiang WY; Hsieh WH; Escobar C; Buijs RM; Hu K
    Front Physiol; 2016; 7():174. PubMed ID: 27242548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity.
    Chiesa JJ; Cambras T; Carpentieri AR; Díez-Noguera A
    J Biol Rhythms; 2010 Feb; 25(1):37-46. PubMed ID: 20075299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the circadian system in fractal neurophysiological control.
    Pittman-Polletta BR; Scheer FA; Butler MP; Shea SA; Hu K
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):873-94. PubMed ID: 23573942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators.
    Kunz H; Achermann P
    J Theor Biol; 2003 Sep; 224(1):63-78. PubMed ID: 12900204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat.
    Scheer FA; Kalsbeek A; Buijs RM
    Biol Chem; 2003 May; 384(5):697-709. PubMed ID: 12817466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of circadian behavior.
    Oster H
    Genes Brain Behav; 2006; 5 Suppl 2():73-9. PubMed ID: 16681802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term effects of sleep deprivation on the mammalian circadian pacemaker.
    Deboer T; Détári L; Meijer JH
    Sleep; 2007 Mar; 30(3):257-62. PubMed ID: 17425221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.
    Scheer FA; Pirovano C; Van Someren EJ; Buijs RM
    Neuroscience; 2005; 132(2):465-77. PubMed ID: 15802197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.