These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18487440)

  • 41. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase.
    Ziouzenkova O; Perrey S; Asatryan L; Hwang J; MacNaul KL; Moller DE; Rader DJ; Sevanian A; Zechner R; Hoefler G; Plutzky J
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2730-5. PubMed ID: 12606719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk.
    Ma F; Darabi M; Lhomme M; Tubeuf E; Canicio A; Brerault J; Medadje N; Rached F; Lebreton S; Frisdal E; Brites F; Serrano C; Santos R; Gautier E; Huby T; El Khoury P; Carrié A; Abifadel M; Bruckert E; Guerin M; Couvert P; Giral P; Lesnik P; Le Goff W; Guillas I; Kontush A
    Atherosclerosis; 2021 May; 324():1-8. PubMed ID: 33798922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of reactive oxygen species in endothelial cells by peroxynitrite-treated lipoproteins.
    Matsunaga T; Nakajima T; Sonoda M; Koyama I; Kawai S; Inoue I; Katayama S; Hirano K; Hokari S; Komoda T
    J Biochem; 2001 Aug; 130(2):285-93. PubMed ID: 11481047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HDL and Reverse Remnant-Cholesterol Transport (RRT): Relevance to Cardiovascular Disease.
    Kontush A
    Trends Mol Med; 2020 Dec; 26(12):1086-1100. PubMed ID: 32861590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Postprandial triglyceride-rich lipoproteins induce hepatic insulin resistance in HepG2 cells independently of their receptor-mediated cellular uptake.
    Tatarczyk T; Ciardi C; Niederwanger A; Kranebitter M; Patsch JR; Pedrini MT
    Mol Cell Endocrinol; 2011 Aug; 343(1-2):71-8. PubMed ID: 21704120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recruitment of α7 nicotinic acetylcholine receptor to caveolin-1-enriched lipid rafts is required for nicotine-enhanced Escherichia coli K1 entry into brain endothelial cells.
    Chi F; Wang L; Zheng X; Jong A; Huang SH
    Future Microbiol; 2011 Aug; 6(8):953-66. PubMed ID: 21861625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury.
    Yi F; Jin S; Zhang F; Xia M; Bao JX; Hu J; Poklis JL; Li PL
    J Cell Mol Med; 2009 Sep; 13(9B):3303-14. PubMed ID: 20196779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC.
    Therade-Matharan S; Laemmel E; Duranteau J; Vicaut E
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1037-43. PubMed ID: 15205181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium.
    Wei YM; Li X; Xiong J; Abais JM; Xia M; Boini KM; Zhang Y; Li PL
    J Pharmacol Exp Ther; 2013 May; 345(2):170-9. PubMed ID: 23435541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
    Rashid-Doubell F; Tannetta D; Redman CW; Sargent IL; Boyd CA; Linton EA
    Placenta; 2007; 28(2-3):139-51. PubMed ID: 16480767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.
    Aung HH; Altman R; Nyunt T; Kim J; Nuthikattu S; Budamagunta M; Voss JC; Wilson D; Rutledge JC; Villablanca AC
    J Lipid Res; 2016 Jun; 57(6):955-68. PubMed ID: 27087439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid raft-dependent activation of dual oxidase 1/H2O2/NF-κB pathway in bronchial epithelial cells.
    Wang L; Zhen H; Yao W; Bian F; Zhou F; Mao X; Yao P; Jin S
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C171-80. PubMed ID: 21389273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Label-free imaging and analysis of the effects of lipolysis products on primary hepatocytes.
    Schie IW; Wu J; Weeks T; Zern MA; Rutledge JC; Huser T
    J Biophotonics; 2011 Jun; 4(6):425-34. PubMed ID: 20878906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction.
    Jin S; Zhang Y; Yi F; Li PL
    Arterioscler Thromb Vasc Biol; 2008 Mar; 28(3):485-90. PubMed ID: 18162606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells.
    Jin S; Yi F; Zhang F; Poklis JL; Li PL
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2056-62. PubMed ID: 18772496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus.
    Kozak SL; Heard JM; Kabat D
    J Virol; 2002 Feb; 76(4):1802-15. PubMed ID: 11799176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Norfuraneol dephosphorylates eNOS at threonine 495 and enhances eNOS activity in human endothelial cells.
    Schmitt CA; Heiss EH; Aristei Y; Severin T; Dirsch VM
    Cardiovasc Res; 2009 Mar; 81(4):750-7. PubMed ID: 19036824
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins.
    Huang Y; Liu XQ; Rall SC; Mahley RW
    J Biol Chem; 1998 Jul; 273(28):17483-90. PubMed ID: 9651338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein.
    Karpe F; Tornvall P; Olivecrona T; Steiner G; Carlson LA; Hamsten A
    Atherosclerosis; 1993 Jan; 98(1):33-49. PubMed ID: 8457249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.