BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 18488066)

  • 1. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney.
    Legrand M; Mik EG; Johannes T; Payen D; Ince C
    Mol Med; 2008; 14(7-8):502-16. PubMed ID: 18488066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats.
    Legrand M; Almac E; Mik EG; Johannes T; Kandil A; Bezemer R; Payen D; Ince C
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1109-17. PubMed ID: 19225052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of renal hypoxia in the subacute phase of severe renal ischemia-reperfusion injury.
    Ow CPC; Ngo JP; Ullah MM; Barsha G; Meex RC; Watt MJ; Hilliard LM; Koeners MP; Evans RG
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1358-F1369. PubMed ID: 30110566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal oxygenation in acute renal ischemia-reperfusion injury.
    Abdelkader A; Ho J; Ow CP; Eppel GA; Rajapakse NW; Schlaich MP; Evans RG
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1026-38. PubMed ID: 24598805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage.
    Basile DP; Donohoe DL; Roethe K; Mattson DL
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F338-48. PubMed ID: 12388385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury.
    Nourbakhsh N; Singh P
    Nephron Clin Pract; 2014; 127(1-4):149-52. PubMed ID: 25343840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the microcirculation in acute kidney injury.
    Le Dorze M; Legrand M; Payen D; Ince C
    Curr Opin Crit Care; 2009 Dec; 15(6):503-8. PubMed ID: 19829106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygenation of the Transplanted Kidney.
    Rosenberger C; Eckardt KU
    Semin Nephrol; 2019 Nov; 39(6):554-566. PubMed ID: 31836038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in renal hypoxia: insights from bench experiments and computer simulations.
    Layton AT
    Am J Physiol Renal Physiol; 2016 Jul; 311(1):F162-5. PubMed ID: 27147670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrarenal oxygenation determines kidney function during the recovery from an ischemic insult.
    Nensén O; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1067-F1072. PubMed ID: 33044869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide protects against ischemic acute renal failure through the suppression of renal endothelin-1 overproduction.
    Kurata H; Takaoka M; Kubo Y; Katayama T; Tsutsui H; Takayama J; Matsumura Y
    J Cardiovasc Pharmacol; 2004 Nov; 44 Suppl 1():S455-8. PubMed ID: 15838347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological effects of altering oxygenation during kidney normothermic machine perfusion.
    Adams TD; Hosgood SA; Nicholson ML
    Am J Physiol Renal Physiol; 2019 May; 316(5):F823-F829. PubMed ID: 30785351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sepiapterin infusion on renal oxygenation and early acute renal injury after suprarenal aortic clamping in rats.
    Legrand M; Kandil A; Payen D; Ince C
    J Cardiovasc Pharmacol; 2011 Aug; 58(2):192-8. PubMed ID: 21562427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of captopril treatment on recuperation from ischemia/reperfusion-induced acute renal injury.
    Efrati S; Berman S; Hamad RA; Siman-Tov Y; Ilgiyaev E; Maslyakov I; Weissgarten J
    Nephrol Dial Transplant; 2012 Jan; 27(1):136-45. PubMed ID: 21680852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal Decapsulation Prevents Intrinsic Renal Compartment Syndrome in Ischemia-Reperfusion-Induced Acute Kidney Injury: A Physiologic Approach.
    Cruces P; Lillo P; Salas C; Salomon T; Lillo F; González C; Pacheco A; Hurtado DE
    Crit Care Med; 2018 Feb; 46(2):216-222. PubMed ID: 29341964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of ischemic preconditioning on ischemia/reperfusion-induced acute kidney injury through sympathetic nervous system in rats.
    Tsutsui H; Tanaka R; Yamagata M; Yukimura T; Ohkita M; Matsumura Y
    Eur J Pharmacol; 2013 Oct; 718(1-3):206-12. PubMed ID: 24036256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose) polymerase-mediated cell injury in acute renal failure.
    Devalaraja-Narashimha K; Singaravelu K; Padanilam BJ
    Pharmacol Res; 2005 Jul; 52(1):44-59. PubMed ID: 15911333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-drowning: new perspectives for human hypoxic acute kidney injury.
    Heyman SN; Gorelik Y; Zorbavel D; Rosenberger C; Abassi Z; Rosen S; Khamaisi M
    Nephrol Dial Transplant; 2020 Feb; 35(2):206-212. PubMed ID: 30768198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renoprotective effects of gamma-aminobutyric acid on ischemia/reperfusion-induced renal injury in rats.
    Kobuchi S; Shintani T; Sugiura T; Tanaka R; Suzuki R; Tsutsui H; Fujii T; Ohkita M; Ayajiki K; Matsumura Y
    Eur J Pharmacol; 2009 Nov; 623(1-3):113-8. PubMed ID: 19765583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.