These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1848816)
1. Visible, EPR and electron nuclear double-resonance spectroscopic studies on the two metal-binding sites of oxovanadium (IV)-substituted D-xylose isomerase. Bogumil R; Hüttermann J; Kappl R; Stabler R; Sudfeldt C; Witzel H Eur J Biochem; 1991 Mar; 196(2):305-12. PubMed ID: 1848816 [TBL] [Abstract][Full Text] [Related]
2. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. Bogumil R; Kappl R; Hüttermann J; Sudfeldt C; Witzel H Eur J Biochem; 1993 May; 213(3):1185-92. PubMed ID: 8389296 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic studies on the metal-ion-binding sites of Co2(+)-substituted D-xylose isomerase from Streptomyces rubiginosus. Sudfeldt C; Schäffer A; Kägi JH; Bogumil R; Schulz HP; Wulff S; Witzel H Eur J Biochem; 1990 Nov; 193(3):863-71. PubMed ID: 2249698 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors. Bogumil R; Kappl R; Hüttermann J; Witzel H Biochemistry; 1997 Mar; 36(9):2345-52. PubMed ID: 9054539 [TBL] [Abstract][Full Text] [Related]
5. Binding sites for Mg(II) in H(+)-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324. Buy C; Matsui T; Andrianambinintsoa S; Sigalat C; Girault G; Zimmermann JL Biochemistry; 1996 Nov; 35(45):14281-93. PubMed ID: 8916914 [TBL] [Abstract][Full Text] [Related]
6. The dimanganese(III,IV) oxidation state of catalase from Thermus thermophilus: electron nuclear double resonance analysis of water and protein ligands in the active site. Khangulov S; Sivaraja M; Barynin VV; Dismukes GC Biochemistry; 1993 May; 32(18):4912-24. PubMed ID: 8387822 [TBL] [Abstract][Full Text] [Related]
7. Perturbing the metal site in D-xylose isomerase. Effect of mutations of His-220 on enzyme stability. Cha J; Cho Y; Whitaker RD; Carrell HL; Glusker JP; Karplus PA; Batt CA J Biol Chem; 1994 Jan; 269(4):2687-94. PubMed ID: 8300598 [TBL] [Abstract][Full Text] [Related]
8. Iron binding to horse spleen apoferritin: a vanadyl ENDOR spin probe study. Hanna PM; Chasteen ND; Rottman GA; Aisen P Biochemistry; 1991 Sep; 30(38):9210-6. PubMed ID: 1654090 [TBL] [Abstract][Full Text] [Related]
10. Characterization of ligands of a high-affinity metal-binding site in the latent chloroplast F1-ATPase by EPR spectroscopy of bound VO2+. Houseman AL; Morgan L; LoBrutto R; Frasch WD Biochemistry; 1994 Apr; 33(16):4910-7. PubMed ID: 8161551 [TBL] [Abstract][Full Text] [Related]
11. Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber. Callens M; Tomme P; Kersters-Hilderson H; Cornelis R; Vangrysperre W; De Bruyne CK Biochem J; 1988 Feb; 250(1):285-90. PubMed ID: 3355516 [TBL] [Abstract][Full Text] [Related]
12. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
13. Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases. Van Bastelaere PB; Callens M; Vangrysperre WA; Kersters-Hilderson HL Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):729-35. PubMed ID: 1417732 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for VO(2+)-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe-protein identified by ENDOR spectroscopy. Petersen J; Mitchell CJ; Fisher K; Lowe DJ J Biol Inorg Chem; 2008 May; 13(4):637-50. PubMed ID: 18386081 [TBL] [Abstract][Full Text] [Related]
16. Characterization of calcium-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin with vanadyl ions: electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Mustafi D; Nakagawa Y Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11323-7. PubMed ID: 7972057 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of Mg2+ binding sites in isolated alpha and beta subunits of H(+)-ATPase from Bacillus PS3. Zimmermann JL; Amano T; Sigalat C Biochemistry; 1999 Nov; 38(46):15343-51. PubMed ID: 10563820 [TBL] [Abstract][Full Text] [Related]
18. Structure of cupric bleomycin. Nitrogen and proton couplings from EPR and electron nuclear double resonance spectroscopy. Antholine WE; Hyde JS; Sealy RC; Petering DH J Biol Chem; 1984 Apr; 259(7):4437-40. PubMed ID: 6200482 [TBL] [Abstract][Full Text] [Related]
19. Hydrogenases in the "active" state: determination of g-matrix axes and electron spin distribution at the active site by 1H ENDOR spectroscopy. Müller A; Tscherny I; Kappl R; Hatchikian C; Hüttermann J; Cammack R J Biol Inorg Chem; 2002 Jan; 7(1-2):177-94. PubMed ID: 11862554 [TBL] [Abstract][Full Text] [Related]
20. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL Proteins; 1991; 9(3):153-73. PubMed ID: 2006134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]