These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18488208)

  • 1. Cubic phases in biosensing systems.
    Nazaruk E; Bilewicz R; Lindblom G; Lindholm-Sethson B
    Anal Bioanal Chem; 2008 Jul; 391(5):1569-78. PubMed ID: 18488208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodes modified with monoolein cubic phases hosting laccases for the catalytic reduction of dioxygen.
    Rowiński P; Bilewicz R; Stébé MJ; Rogalska E
    Anal Chem; 2004 Jan; 76(2):283-91. PubMed ID: 14719872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediated biosensors.
    Chaubey A; Malhotra BD
    Biosens Bioelectron; 2002 Jun; 17(6-7):441-56. PubMed ID: 11959464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrogen peroxide biosensor based on the direct electron transfer of hemoglobin encapsulated in liquid-crystalline cubic phase on electrode.
    Gao F; Yao Z; Huang Q; Chen X; Guo X; Ye Q; Wang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):359-64. PubMed ID: 20889315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipidic liquid crystalline cubic phases for preparation of ATP-hydrolysing enzyme electrodes.
    Zatloukalová M; Nazaruk E; Novák D; Vacek J; Bilewicz R
    Biosens Bioelectron; 2018 Feb; 100():437-444. PubMed ID: 28961546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane biosensor platforms using nano- and microporous supports.
    Reimhult E; Kumar K
    Trends Biotechnol; 2008 Feb; 26(2):82-9. PubMed ID: 18191259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode.
    ElKaoutit M; Naranjo-Rodriguez I; Temsamani KR; Domínguez M; Hidalgo-Hidalgo de Cisneros JL
    Talanta; 2008 Jun; 75(5):1348-55. PubMed ID: 18585223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances.
    Lee YS; Lim K; Minteer SD
    Annu Rev Phys Chem; 2021 Apr; 72():467-488. PubMed ID: 33503384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing.
    Crespilho FN; Ghica ME; Gouveia-Caridade C; Oliveira ON; Brett CM
    Talanta; 2008 Aug; 76(4):922-8. PubMed ID: 18656679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein electrodes with direct electrochemical communication.
    Wollenberger U; Spricigo R; Leimkühler S; Schröder K
    Adv Biochem Eng Biotechnol; 2008; 109():19-64. PubMed ID: 17928972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stationary kinetics of the function of multienzyme membrane sensors with electrochemical enzyme regeneration].
    Sorochinskiĭ VV; Kurganov BI
    Biokhimiia; 1992 Nov; 57(11):1603-10. PubMed ID: 1489824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors.
    Silveira CM; Almeida MG
    Anal Bioanal Chem; 2013 Apr; 405(11):3619-35. PubMed ID: 23430181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEI-coated gold nanoparticles decorated with laccase: a new platform for direct electrochemistry of enzymes and biosensing applications.
    Brondani D; de Souza B; S Souza B; Neves A; C Vieira I
    Biosens Bioelectron; 2013 Apr; 42():242-7. PubMed ID: 23208093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction.
    Zhang D; Zhang K; Yao YL; Xia XH; Chen HY
    Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of electrochemical biosensors based on sol-gel enzyme encapsulation and protective polymer membranes.
    Pauliukaite R; Schoenleber M; Vadgama P; Brett CM
    Anal Bioanal Chem; 2008 Feb; 390(4):1121-31. PubMed ID: 18080811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems.
    Monteiro T; Almeida MG
    Crit Rev Anal Chem; 2019; 49(1):44-66. PubMed ID: 29757683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buffers may adversely affect model lipid membranes: a cautionary tale.
    Peiró-Salvador T; Ces O; Templer RH; Seddon AM
    Biochemistry; 2009 Dec; 48(47):11149-51. PubMed ID: 19860472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic reduction of hydrogen peroxide on modified graphite electrodes: application to the development of glucose biosensors.
    Dodevska T; Horozova E; Dimcheva N
    Anal Bioanal Chem; 2006 Nov; 386(5):1413-8. PubMed ID: 16967186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents.
    Liu G; Lin Y
    Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.